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2 SYMMETRIES AND GROUP THEORY

2.1 Symmetry Transformations

2.1.1 Properties of the Expansion Coefficients of U
The general expansion for the unitary operators is given by

1
U(T(0)) =1+ 6%+ EG“Hbt“b +0(6%).

In this expansion the t’s are operators/matrices. t*? is symmetric in a, b, since any antisymmetric part
of t*? would vanish due to the symmetric 8%0?, and t% needs to be Hermitian (i.e. t = tT). This is easy
to see, when we expand only up to the first order in 6, from which follows?

Ul=1-i0%* Ut=1-ig%
and we already know that U is unitary, i.e. U=t = U™,

2.1.2  Deriving the Relation between the generators
Consider the expansion of the equation

u(T))U(T®)) =U (T(f(6',6)))
Up to second order, on the left-hand side we have
u(Te))U(T(8)) = (1 +i6't® +%9’“0’bt“b) (1 +i6°t° + %6%%“)
=1+i0"%*+i0%%* — 6'*0 %P + % (646° + g'2g'P)tab
and on the right-hand side
U (T(f(6,6))) = U (T(6% + 6" + h®gp'))
=1+i(0%+ 0" + h®6P6')t* + % (0% + 6" + h*?6°6'1)(6° + 6'° + hPS 926" )P
=14 i0%% +i6'%t* + ihbcpPy'ct +%(9“9b + 690" +0'26P + 9'29'P) b,
If we equate those expressions and use that t*? = t?@ (see (>2.1.1)), we are left with
_g'agbrash — jpabcgagibec 4 gagrbiab,
which yields the relation
tab — _pab _ jpabcic

2.1.3  The Lie Algebra
This can easily be seen, using (>2.1.2) and t% = >

[ta,tb] — tatb _ tbta — (_tab _ ihabctc) _ (_tba _ ihbactc) — i(hbac _ habc)tc —. ifabctc_

1 The inverse is constructed such that UU™! = 1:

(1+i0%,)(1 —i6%,) =1+ 0(6?).
The adjoint is constructed simply by putting daggers everywhere and using a® = a fora € Raswellas it =
—I.



2.1.4 The Jacobi Identity
In general, commutators obey the Jacobi identity

[4,[B,c]] + [B,[C,Al] + [C,[A B]] = o.
Plugingin A = t%, B = t?,C = t° and using the Lie algebra, we find
0= [ta, [tb,tc]] + [tb’ [tc’ta]] + [tc’ [ta’tb]] = ifbed[¢e 1d] 4 jfead[¢h ¢d] 4 jfabd[ec ¢d]
= j2fbed fadepe | ;2 fcad fhdege ;2 fabd podeye
- fbedfdae 4 fead gdbe | fabd pdce — ()

Note that, by definition, f%¢ = —fba¢, We used this identity in the last step for the second structure
constant of each term (producing a global minus sign, which is irrelevant).

2.2 The SU(N) Group

2.2.1 Determinant of Exponential gives the Trace
Consider a Hermitian matrix 4, which can be diagonalized by unitary matrices U like A = UTDU. Using
the fact that

detAB = detBA, TrAB = Tr BA,

we find
0 . n © .
deteid = deteiV'PU = detz M = det UTZ (D)" U = dete'?
) n! ) n!
el 0 0 m
_ det( 0 - 0 ) _ l_[eizi — oIS A = HITrD _ HiTrutDU _ ,iTra
0 0 eitm i=1

2.2.2  Explicit Formula for the Structure Constant
Using the normalization condition Tr t%t? = T(R) §%°, where T(R) is a number, we find

Tr([t% t2]t€) = if e Tr(t%t¢) = if 2 T(R)5% = if ¢ T(R)
i

o fabe = —T(R)Tr([ta,tb]tc).

Already by its definition it is obvious that the structure constant is antisymmetric in the first two
indices: f4P¢ = —fbac This equation implies, however, that the structure constants are even totally
antisymmetric. Using the cyclicity of the trace and the general commutator identity [t%,t?t¢] =
tP[t®, t¢] + [t%, tP]t¢, we find

Tr([t%, tP]t) = Tr([t%, tPt¢] — tP[t%, t°]) = — Tr(t?[t% t€]) = — Tr([t% t€]t?),

where we used that the trace of a pure commutator always vanishes due to the cyclicity of the trace:
Tr[A,B] = Tr AB — Tr BA = 0. In this way, swapping the order of to generators will always generate
a minus sign.

2.2.3  Two Generators make a Casimir Invariant
We claimed that t%t“ is a Casimir invariant. Let’s proof this:

[tata,tb] — ta[ta,tb] + [ta,tb]ta — l-fabctatc + l-fabctcta — l-fabc{ta’tc} =0.

This vanishes, since f“bc is antisymmetric in a, ¢, whereas {t%,t°} is symmetric in a, c.



2.2.4  The Casimir Invariant in the Fundamental and Adjoint Representations
For the definitions of the fundamental and adjoint representations see the end of section 2.2.

Using the Fierz identity of the fundamental representation, we find in this representation

o 1 1 1 1 1/N*—1
6ik CF = 6ik Cz(fund) = tijtjk = 5(6”‘5]] - N6lj6jk> = E(N —N) 5ik = E N 6ik

N?2 -1
2N

= CF=

Here we used 5jj = N; since we are in the fundamental representation, the matrices t* have
dimension N and thus the indices take on values i, j, k = 1, ..., N.

To find the Casimir invariant in the adjoint representation, consider first the following computation:
atbra acsarb b ta b ifabcragsc b 1-abc a ¢c a ¢c
tP Pt =t (e %P + [t°, t?]) = Cot° — if Pt = Cyt —Elf ([t%, t€] + {t%, t})

1 1 1
— b ifabc (i ded — b a — b bd +d
= Cot? —SifPe(if 2ttt +0) = Cot —E(t;ldj)bc(t;‘dj ot = Cat? =5 40"

(C ! C )tb
- 2 2 A -
Note, that this computation made no use of t* beeing of some specific representation. Obviously, C, is
the Casimir invariant in the adjoint representation only, but still this equation holds for any
representation of the t’s when taking C, in the same representation. That is, it also holds in the
fundamental representation. Evaluating t“t”t% in the fundamental representation explicitly, using the
Fierz identity, we find
1 1 1 1 1
—tarbia _ b _ b b\ _ b
(%Pt = thithth = 5(61-15,{1- — Ncsl-j&kl) th = E(5iltff - Nt”> = =5y tiv

where we used that t¢ are traceless. Thereby, marking now explicitly the representations:

1 1
(taebre)ind = (CF -3 CA) tand = = 577 tand

o —L¢ ! €= 2Cs + 4 zNz_l+1 N
= —_— = - — f—3 = e —_— = .
Foa™a 2N A FTN 2N N

2.2.5 Proof of Relationship between Normalization and Casimir Invariant
From the definitions of the normalization T (R) and the Casimir invariant C,(R),

Trt%t? = T(R) 69, t%* =1C,(R)
follows
C,(R) -dimR = C,(R) Trlg = Tr(C,(R) Ig) = Trt%t® = T(R) §*¢ = T(R) (N? — 1),

where dim R is the dimension of the matrices of representation R and I is the unit matrix with that
dimension dim R.

2.2.6  Matrices of the Adjoint Representation Fulfil Lie Algebra
In (>2.1.4) we found the Jacobi identity (here multiplied by i?)

i2fbcdfdae + i2fcadfdbe — _iZfabdfdce.

Let’'s commute the indices in the following way. Then, since in the adjoint representation, (t%);. =
—if ¢ we can plug in the generators:

_iszcdfade + izfacdfbde — _izfabdfdce



e —(t"eaDge + EDeatae = if PHEDce
e (Pt e + (") e = if PEE)ce

e [t = if PNt Yee

& [te,tP] = if *bdte,

Thus, the adjoint representation indeed fulfils the Lie algebra.

2.3 Lorentz Transformation

2.3.1 Deriving Properties of Lorentz Transformations
Any coordinate transformation obeying the equations above is linear,

x* = A XY+ at
with arbitrary constants a* and constants A, satisfying the conditions
n#vAﬂpAVo = 77,),, = AHJAK‘EUJT = n[uc, TI,W??W = 6Z

This equivalency can be derived by multiplying by A*.n°" and then by A~1”. and finally by n*¢ on both
sides. By the way, the inverse can be given as

AT = AH = n,,1"°A%, since AJAY = (nwr]“pA“p)A”K = n“pnpk ="
Taking the determinant yields
detA"pnwA"J = det(A"nA) = det? Adetn = detn < detA=1.

2.3.2  Two successive Lorentz Transformations is a Lorentz Transformation Again
~U . s
A", also fulfills the condition nwA“pA”(7 =1,
~U ~V ~U ~V
nuv(A KAKP)(A TATU) = nyvA KA TAKPATU = npa'
A ——

“Mier

2.4 The Poincaré Algebra

2.4.1 Infinitesimal Lorentz Transformation
For an infinitesimal Lorentz transformation

_ I _
M, =6+ ", at=¢
the Lorentz condition reads

My = nw(d’*p + w"p)(c?"g + w’y) = Mpy + Wpo + W5y + 0(w?) & w,=-w

v vpr

2.4.2  Lorentz Transformation of P* and J*¥
To first order in w and €, we have

1 1
U(A, a) (z W) — EMP“> U t(Aa) = > (AwA™) pJ* — (Ae — AwA™ a),, PH.

Equating the terms with w,, yields

U(A, Q)wspJ?PU (A, @) = AZAS W + 20" PR wg, = AN (JH — atPY + a’ PH)wg,,



where the following identities where used:
(A(‘)A_l)w, = AugwapA_l Py = 0N wgp,
(Awr™a) = (AwA™) a” = AN wg,a,
AN a Prwg, = AfASa' PP wy, = —A NP wg,

Equating the terms with €, read U(A, @)e,P°U~" (A, a) = A,°€,PH, thus the two following equations
hold:

UM @)J°PUL (A @) = AZAS (¥ — abPY + a¥PH),
U(A a)P°U (A a) = A#UP“.
2.4.3 Lie Algebra of the Poincaré Group (Commutator Relations of P* and J*")

Up to first order in w and € we get for the J°P-equation, using (1 + B)A(1 — B) = A+ [B,A] + O(BZ),

LHS: U(1l+ w,€)J°PU (1 + w,e) =U(1 + w,€)J°PU(1 — w,—(1 — w)e)

= <1 + (%iw,n,]‘“’ - ieﬂP“)) Jor (1 - (%ia)m]’“ - ieKP"))

1
= o0 + | (G 0w — ieuPt).17°),
RHS: (6,7 + 0,°)(8,” + w,”)J# — €FPY + €"PH) = J°P — €“PP + €PP% + 0, J* + 7]V

1
e i [(E Wy J ™ — eﬂpﬂ) , ]GP] = W, ] + w,J7* — €7PP + P PO,

Similarly, the P#-equation reads

1
i [(E W — euP”) , P"] = w, " PH.

Again, by equating the coefficients of w,, and €, on both sides, the following commutator relations

follow (note that w,, A" = —w,,, A", since w,,, is antisymmetric):

uv

iwyv U”V»]Up] = Z(wauv]up + Upkuv]"”) = Wyy (Tlv”]”p - n,ua]vp + Tl”plw - an]#U);

—i€e,[PH,]°P] = —n°Fe, PP +1Pte, PO,
inVUuV'PG] = Znakuvpu = wuv(rl"VP” —noHpY),
_ieﬂ[P‘u) PO'] = 0

The second and third of those four equations are trivially equivalent, thus only the following three
equations remain and make up the Lie algebra of Poincaré group:

([, J7P] = 7" ]2 — qhoJue 4 qhe]YT — pUe]he,
i[P¥,JOP] = noHPP — nPHPY,
i[P*,P?] = 0.
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3 CLASSICAL FIELD THEORY

3.1 The Lagrangian Density and Euler-Lagrange Equations

3.1.1 The Euler-Lagrange Equations
In contrast to classical mechanics, classical field theory is based on a Lagrangian density L rather than
a Lagrangian L, although they are closely related by

L= fde’xll.

The dynamics of fields can be deduced by the variational principle applied to an action functional,
involving a Lagrange density £, which is a function of fields ¢a(x), a=1,2,3,...and its derivatives:

S(Q) = f dtL = f d*x L(¢pa, 0,ba),
Q

where (1 is a subset of the spacetime M and we assumed that £ is not a function of higher derivatives
of ¢ . Typically, we have (1 = M. We assume now that § is stationary under any small variations of

the fields ¢, - ¢, + d¢ , and that those variations vanish on the boundary 0. The variation of S now
reads

6S=fd4x<a£ 5, + —% 6(a¢))=fd4x<aL _g, 2k )5¢
0 \0de Tt 8(0upa) " M o \0ds  Ma(dua))

The condition for ¢, to be the physical fields with the correct dynamics is that §S needs to vanish for

any 6¢,; this is what we meant when we assumed S to be stationary. Obviously, 65 = 0 Vd¢, is
equivalent to

9L, 0 _
39, o009

called the Euler-Lagrange equations.

0,

3.1.2 The Lagrangians of the Klein-Gordon and the Dirac Field
Any well-known equation of motion can be encrypted in a Lagrangian L. For example,

1 1
L=5(01) —om?¢? (049" = (3"$)(9,9)

(sum over u is implied) gives the Klein-Gordon equation

0_6_1:_6 6—[,_
S0 Ma(a,0)

when plugged into the Euler-Lagrange equations. Here, we used the quabla operator U := 0#9,,.

-m?¢p — 0,0"¢ = (O+m?»)ep(x)=0

For a complex Klein-Gordon field, we should use the Lagrangian
L =|04¢l —m?|¢p|* = (0*$)"(9u¢) — m* ",
and treat ¢ and ¢* as independent fields, which gives the Euler-Lagrange equations

oL 0L

=——a—=
T %3009

—-m?¢p — 9,0%¢ = (O+m?»)ep(x) =0,

11



aL aL
% — aﬂa(a—m = —m2¢ - 6u0”¢> 54 (D + m2)¢ (X) =0.

If we take the Lagrangian

L=1y@i8 —myp
and treat Y = 1Ty as an independent field, there are two Euler-Lagrange equations, namely
0 0L 3 0L (o YW—0
= ——— — =ee—m — U,
oy *a(a,9)
0L aL — — e
0 —my — O, piy* = —P(ie-+ m).

= —_—— a —_—
oy *a(a,y)
Here we used the following definition of a derivative acting to the left:
f()0,900) = (94 (%)) g().

That is, 5# only acts on f, but not on g. For our Dirac equation, this notation turns out to be handy,
since the alternative equivalent would be rather ugly, because we cannot commute 1) with the y

matrix inside

0= 1[_)(i<§l+ m) = ((?Mt[_))iy“ + yYm.

3.2 Noether’s Theorem

3.2.1 Variation of the Integration Measure
We know that differentials like d*x transform under coordinate transformations by a Jacobian
determinant as follows:

d*x’ = d*x det[ox" /dxH],
where [0x"V /dx"] is supposed to denote the matrix with elements dx"v /dxH:
ax"v ox'®
5, o
We consider a coordinate transformation of the form x'* = x# + §x#* < §x#* = x'* — x#, thus also

the variation of the differential obeys §d*x = d*x’ — d*x. We can write this variation, using the
Jacobian, as

v

0x
Sd*x = d*x' —d*x = d*x (det -
OxH

= d*x(det[5) + 9,6x"] - 1).

1) = d*x(det[d,x" + 9,6x"] — 1)

For a,, = 9,6x", this determinant is of the form

1+ay, a1z a3 a1
v vl — a1 l+4az;  ax azs | _ Z . 2
det[@u + 9,6x ] = det sy s, 1+ ag sy =1+ ' a; +0(a?).
Q41 %) Qa3 1+ a4, '

Since 6xV is infinitesimal, we find

§d*x = d*x(1+ 9,6x* — 1) = d*x 9,6xH.

12



3.2.2  Variation of the Fields
Let us plug in a zero into our variation rule for the fields:

Pa(x) = po(x) + 6P (x) = 8¢pa(x) = Pa(x’) = Pa(x) + ¢q(x) — o (x).

=0

The first two terms of this expression are the difference of a function ¢, between two nearby points
x" and x, which is generally is given by its derivative times the separation:

() = pa () = (9P (0)) (x'8 — xH) = 8xH 0,4, (x) = 6x# 9 (x).

In the last step, we used ¢/ = ¢, + 0(¢,). Since this term only contains the infinitesimal §x*, we
could neglected correction of order §x* §¢,,.

Let us define the last two terms of the expression for § ¢, as the “simple” variation §,, that varies the
fields but not the coordinates:

8oPa(x) = g (x) — P (x).

Then, we can write
8a(x) = 6x# 0,04 (x) + Soha(x) © 8oPa(x) = 6pq (x) — 6x# 0,4 (x).

3.2.3  Variation of the Lagrangian
The derivation of the Lagrangian is understood to be defined as

6L(pq(x), ...) = L(Pg(x"), ...) = L(Ppg(x), ...)

(obviously, there is nothing like a dashed Lagrangian L', since we only vary coordinates and fields, but
certainly not the Lagrangians themselves). The dots ... stand for the derivatives of the fields; we omit
to denote them explicitly in this computation.

Just as for the fields in (>3.2.2), let us plug in a zero into the equation above:

8L(pq(x), ...) = L(Pa(x"), ...) = L(¢g(x), ..) + L(¢g (%), ...) = L(Pa (), ...).

=0

In the end, L(¢/(x), ...) is a function of x. Thus, the first two terms describe a function evaluated at x’
minus the same function at x. Just as in (>3.2.2), such a difference is the same as the derivative of the
function at x times the difference of x' — x = 6x:

L(pg(x"),...) = L(gg(x), ...) = 8x* 0, L(¢g(x), ...) = 8x* 9, L(¢g(x), ...).

As in (>3.2.2), we used that ¢ and ¢, only differ by an infinitesimal amount. Since this term already
contains the infinitesimal §x*, we could replace ¢/ by ¢, to the order of one infinitesimal object.

The second two terms are the simple variation of the Lagrangian, §,£. We can expand §,L in the
simple derivations of the fields in the same way as we expanded §£ in the deviations of the fields when
we derived the Euler-Lagrange equations in (>3.1.1):
oL
~*4300,8a)
T
L(d.(x),..)—L x),...) = 6L xX),..) = —90
(¢a( ) ) (¢a( ) ) 0 (¢a( ) ) ad) O¢a a(a/,td)a)

:<a”%)ao¢a p (au¢a) (0,60%a) =9, <%50¢a>.

Here we used, that we assumed that the fields ¢, obey the Euler-Lagrange equations.

8o (au¢a)

Combining the results for the first and last two terms of §£, we find

13



0L
6L = 5x“ aﬂL + 6# (WgO(pa),
u¥a

we all fields and variables are undashed.

3.2.4 Combining the Results
Combining the result of (>3.2.1), (>3.2.2) and (>3.2.3), we find

4 4 4 4 H 4 H _aL
§(d*x £) = (8d*x) L + d*x (6£) = (d*x 9,6x*) L + d*x| §x* 3,L + 9, 3(5u9) ¢
uPa

=d*xd (L Sxt + 0—£5O¢> =d*xd,| n* L 6x, +
g 9(9ucba) :

0L (540 — 53" dyha)
PYZYNEN a — 0X vWa
9(0u9q)

=d*xd <7]“"L—6—LE)V¢ >6x +6—L6¢
! 0(0upa) )" 0(0uda) "

=d*xd (—T’“’&xv + a—L(?(;ba).
: 9(9u¢ba)

Here, we defined the energy momentum tensor

p— oL
O(O#qba)

0" — 1"V L.

3.3 The Hamiltonian in Classical Field Theory

3.3.1 Hamiltonian of the Klein-Gordon Field
Using the Klein-Gordon Lagrangian from section 3.1,

1 m? 1. 1 m?
= — H 2 _ _ Hh2 —_H2__ 2 _ 2
L= (@M =t = 5 =5 (V) = g
we find

M=—=
d¢

é.
Thus,
H :fd3xfl-[ =fd3x:r°° = fd3x (Mg — £) =fd3x <n¢5—%¢2+%(v¢)2+m72¢2>
=3 [ @ (8 + @oy + m4?)

3.3.2  Hamiltonian of the Dirac Field
Using the Dirac Lagrangian from section 3.1,

L =1(ia —my,
we find
aL _. _  0dL
H_—.=1l)l)/0, H=—;:0
P oY
Thus,
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H= fde’x?-[ = fd3xT°° = fd3x (My — £) = fd3x (Piy°y — P(iad — my).

Noether’s theorem assumes, that the fields obey their equations of motion. Thus, we can (or even need
to) assume that v fulfills the Dirac equation (i@ — m)y = 0. Thus, we can drop the second term in the
integral.

3.5 Global U(1) Symmetry yields Particle Currents

3.5.1 Current of the Klein-Gordon Field
Consider the complex Klein-Gordon field Lagrangian from section 3.1,

L= |0kl —m?|?

and the global U(1) gauge transformation U = e'?? for some real parameter . That is, we transform
the fields ¢p and ¢* according to

(;b_)eiqeqs’ (p*_)e—iqe(;b*.

(note, that we now consider the case where U is no matrix and ¢ is no vector, thus the second
transformation above is the equivalent to ¢ — ¢TUT). Obviously, the Lagrangian is invariant under
this transformation. Thus, there will be a conserved Noether current j*, see section 3.2. We did not
transform the coordinates, thus §x# = 0, but we did transform the fields. Expanding for infinitesimal
0, we find ¢ = ¢ + §¢ with §¢ = iq8¢. Thus, using the formula from section 3.2, we find (with the
independent fields ¢p,—; = ¢ and ¢, = ¢p*)

L ¢, aL 6¢ aL 6¢°

S 3 uba) 38 9(0,9) 30 9y 08 0 ¢ T (I9(iaen

= iq(pok¢™ — ¢"0" ).

3.5.2 Current of the Dirac Field
The Dirac Lagrangian from section 3.1 reads

L = (i8 — mp.

It is trivially invariant under global U(1) transformation 1) — e, — 1pe~9 (that is, 5y = iqhy))
Thus, there is a Noether’s current that reads

__oL oy oL 5P
~a(a,p) 00 " 9(a,p) 86
—

j* = Wiy")(iqp) = —qpy*p.

Noether’s theorem tells us, that d,j# = 0. Obviously, we can also choose the current j* = qy*y
(with positive sign), since it also obeys this relation.

3.6 Electrodynamics

3.6.1 Maxwell Equations as Euler-Lagrange Equations
Plugging in the Lagrangian

1 1
L= _ZFMVFW _juA” = o (aptAv - avAM)(a”AV —9vAH) _jMA#

into the Euler-Lagrange equations, we find the Maxwell equations in covariant formulation:

15



oL oL
— gV -
0AH d0(0vAH)

aavan 04 - 6"Af’)>

1
_ju + Eav ((aO'AK - acho)

1
—ju+ 50" (@oAc = 04 (876 — 557))
1 |
= —ju +50" ((0Ay = 9uAy) = (9uAy = 0,4,)) = —ju +0"Fy = 0
o 9=k,

Note that in the first step, we used the indices symmetry for the product rule like
1 1 1 1
20878, =7 ((0,B7)B, + B?(0,B,)) = 7 ((@.B,)B7 + B,(3,B%)) = 5 Bo(9,8%).

3.6.2 Local U(1) Gauge Invariance of the QED Lagrangian
As we learned in section 3.4, local U(1) gauge invariance means invariance under the transformation

() = e Y(x),  P(x) - Px) e,

Although we did not yet find the general transformation rule for the gauge field A#, the U(1) case
corresponds to the well-known case of the gauge transformation that we already encountered long
ago in electrodynamics:

AF(x) -» A*(x) — 0% 0(x).

Let us consider the behavior of the different parts of the QED Lagrangian under this transformation.
First, the kinetic term of the gauge fields contains the electromagnetic tensor F*':

FHV = gFAY — 9VA* —» 0*(AY — 0V0) — 0V (A* — 0H0) = FHV.

It is quite trivially invariant under the transformation. Thus, also the kinetic term —F,, F¥"/4 is
invariant.

Let us further consider what happens to the covariant derivative:

D* = 0" + iqA* - 0" + iq(A* — 040) = 0% — iqd* 0 + iqA* = e'199ke~19 4 jqAH
= el9(9* + igA*)e~119 = ela9phe=ial = ypHyT,

Thus, also the Dirac term - but only together with the interaction - is gauge invariant under local U(1):

YD —m)yY - Pe~90(ie9De=14% — m)eidy = P(iD — m)y.

3.7 Non-Abelian Gauge Theories

3.7.1 The Dirac Part

We now want to find a Lagrangian invariant under a local SU(N) transformation. Let us use the QED
Lagrangian as a starting point, which is invariant under local U(1) transformations, as we found in
(>3.6.2). The Dirac part of the QED Lagrangian reads

L=y —m)p, D, =0, +igA,
If the covariant derivative and the fields transform according to

D, - D;L = UDﬂu‘r, Y- Y = Uy, 1.[_’ N I,l_J' — l,l—JU'r, U = eif%t*
the Dirac part of the Lagrangian is obviously invariant.

In order words: We want to keep the neat transformation rules above also in the SU(N) case, but we
are willing to accept modifications/ generalizations to the transformation rule for the gauge fields A#
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in order to find a SU(N) gauge invariant Lagrangian. Or in yet other words: We could also try to keep
the transformation rule for the gauge field A* - A* — 3#6 and try to adapt the other transformations
rules to make the Lagrangian SU(N) invariant; however, this approach would not lead us to results
that are observed in nature.

Plugging in the definition of the covariant derivative, we find the transformation rule for the gauge
field A,, that is necessary for the Dirac part to be SU(N) gauge invariant:

D,=UDUt o 0, +igA, = U(9, +igA,)Ut
o igA, =UdUt —a, +igUA,U",
Note, that D, is an operator, acting on something to the right. Let us call this something f(x). Then,

(vo,ut—a,)f(x) = (U(8,Ut) +UU S, —0,)f(x) =U(8,Ut)f(x)
and hence
A, = %U(aﬂuf) +UA,UT.

Recall that we argued in section 3.4, that ) must a be a vector if it transforms like ¢ — U and if U is
a matrix, because Uy plays the same role as Y and must therefore be of the same structure. The same
holds for the gauge fields A,. However, the expression above only makes sense, if A, and A, are

matrices. Using U = e?“t* = 1 + i9?t% + 0(62), we find
1
A= (+i04) (3,((1 - i6969))) + (1 + 16t9) 4, (1 — i6°t%) + 0(62)
1
=4, - g(auea)t“ +1i0%[t%, A4,] + 0(6?).

Since A, is a matrix, it does not necessarily commute with t%. Ignoring the third term, this
transformation is an addition (or subtraction) of a term proportional to t%. Thus, it is reasonable to
assume that 4, is a linear combination of t%, thatis

— asa
A, = A%t?,

where a sum over a is implied and Aj;(x) are the coefficients of the constant matrices t*. This proposal

is even more convincing, when we find out that for this construction, the third term is also
proportional to t%:

1 1
Attt = A%t — E(auea)ta +1i0% [t AbtP] = A%t — 5 (9,0%)t% —0°Ay [0 te

ZAzifathC =—fabc
= A'a=Aa—la 0% + fabcpbge
n w= g% uo

3.7.2  Electromagnetic Field Tensor
In section 3.6, we found that we can write the electromagnetic field tensor in the context of
electrodynamics as

1
FIY = QHAY = 9" AV = . [DX, D)

Since the behavior under SU(N) transformation of the covariant derivative D,, is much nicer than that
of the fields Ag, it is natural to adopt the second rather than the first expression as our new definition
in the context of SU(N) invariant theories. Using D, = d,, + igAjt®, we find
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Fy

1 1
V= [D., D] = 7 [0, + igA%t?, 0, + igAbt?]
1
= E([a ,igAbt?] + [igA%t®, a, ] + [igAlt?, igAbtP])
= [8,, A5]t? + [A%, 0, |t + igA%AL[t%, tP] = (8,45)tP — (0,A%)t® — gAZAL fabee,
If we expand F,, = F;t% we find

Fg = 0,A% — 0,A% — gAbAS fabe.

Since the transformation of the covariant derivative under SU(N) is D, - UDuU‘L, the electromagnetic
field tensor transforms according to

1 1 1

F,, = —[D* D"] » —[UD*U',UDYU'] = —U[D* D']UT = UE,, U".
iq iq iq

However, in contrast to QED, F,,, is a matrix now that does not commute with U. Hence, F,,, alone is

not invariant under SU(N).
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4 QUANTIZED KLEIN-GORDON FIELD

4.2 Lorentz Invariant Phase Space Measure

4.2.1 Lorentz Invariant Phase Space Measure

When we integrate over the energy-momentum space d*p, we actually only want to integrate over
such four-vectors p#, which obey p? = m? or equivalently p3 = p2 + m?2. This condition fixes the
energy component p, for a given three-momentum p and we should be able to use this condition to
turn the d*p integral into a d3p integral. Since we expect that this is possible, we use the measure
d*p/(2m)3 instead of d*p/(2m)* (see also the footnote on page 21).

Let us try to impose the relation p? = m? using a §-function. That is, we want to use the integration
measure

d*p d*p
Zn)? §(p*—m?) = Zn )35(190 p* —m?),

ensuring that only momenta with p? = m? are covered by the integral. Let wj := p* + m?. Then, using
properties of the §-function, we find

d*p
(2n)? §(ng — p) (2n)3 2Ipo |Z 8(po £ wp)

Since energies should be positive, we are only interested into the solution p, = +w,,. That is, the
condition p? — m? still allows negative energies and we want to impose the additional condition p, >
0, which we can do using a 8-function:

4

N p 5 5 dp 1 Z dp 1
= —_ = — -|- [ — j—
__ _
B 232w,

Note, that the measure dp is Lorentz invariant for the following reason: When we consider the form
of dp in terms of ~ d*p §(p? — m?)0(p,), we see immediately that d*p and p? are Lorentz invariant
and 6(p,) is Lorentz invariant under usual Lorentz transformation (not time inversion, but boosts and
rotations). Thus, dp is Lorentz invariant.

4.4 Quantization of the Real Klein-Gordon Field

4.4.1 Analogy: Coupled Harmonic Oscillators in Ordinary Quantum Mechanics
Suppose we have a coupled harmonic oscillator Hamiltonian of the form

H = 22 + = quUq,

where Q;; = Qj;. After quantization, the q’s and p’s have become operators. Symmetric matrices like
Q can always be diagonalized by orthogonal matrices O (with 0T0 = I):

D =0QO0T.
We introduce g; and p; as

4 =049, pi=0yp; & q;=05q; =054, p;j=0p;=0;p;
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where we also need to transform the p’s to maintain the commutation relations:
[9i, 9] = [0, 05up1] = OuOplaw, p1] = i040;, 81 = 104 Op = 10y OF; = i5y;.
If we substitute those new variables into H we find
1 m 1 m

! ! ! ! 1 r_! m ! !
H= S Pibit Equijqj = ﬁojiijRipk +3 Okiq1Qi;0/1q] = omPiPi ffIkath

N\om T2 %)

i

where we used that D; = w28y, is diagonal, and we have our diagonalized Hamiltonian. This can now
be solved by ladder operators a;, a;r introduced like (no sum convention!)

q; = Ai(a;r + ai), pi = iBi(a:r - ai)

1 ! . ! 1 ! . !
e a=———(Biq] +iAp)), al (Biq; — iA;p)),

2A;B; i T 248
and from [qi,pj] = i6;; we find that
1 1 1 i i
T I ’ I ’ o o
[al Cl]] |:2AlBl( lql l lpl) ZAJB]( ]ql l ]pl)] 4( ALB] [ql p]] AJBL [pl q]]>
T 24;B; 7

For simplicity, we demand [ai,a;r] = §;;, thus the ladder operators need to be dimensionless. We
therefore take,

1 maw;

A' = ) i — )
' Zma)i ' 2

they do the job. In terms of those, the Hamiltonian can be written as
w; 2 2 w; w;
H= Zj(—(aj + al-) + (a;r + al-) ) = 271 (aiazr + azral-) = 271 (2a;ral- + [ai, a”)
i i i

o1
= Za)i (aiai +E)

1

4.4.2  Analogous Derivation of the Hamiltonian of the Klein-Gordon Field
The Hamiltonian of the real Klein-Gordon field was found to be

1
H= Ef dx (Hz(,;) + (V@) + m2¢2(5c')).
We now also want to diagonalize this Hamiltonian. We do this quite analogous to the harmonic

oscillators in QM: g; is now ¢(X) and p; is I1(X), the indices i are the variables X, thus summation
becomes integration. The analog of q; = 0;;qj is

o) = f EpKEPS@), () = f &3 K&, PI).

where K (¥, ) plays the role of 0]; and the fields in dependence of § play the role of the dashed
coordinates. We know that 0;; ol = 6jk, thus we want something like

f &x K@ PDKTE ) ~ 6@ — 7).
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The first and most elegant thing coming to mind is K(%,5) = e®*? /(21)3; in that case, ¢(p) is the
Fourier transform of ¢(x).1 We will use the short-hand notation d"p := d"p/(2m)"™. However, it is
very important to note, that in contrast to g; and p;, those ¢(p) and I1(p) are not Hermitian:

St = j P3F e Pt (F) = f 435 e pt(—p) = j 35 e P(F) = p(F)
o ¢t@) = (—p), M@ = N(-p).

As in QM case, we want the commutator relation to stay the same for the ¢(p),[1(p) as for the
¢ (%), 1(X). To accomplish that, we need to add a 1 to one of the operators in the commutator. Since g;
and p; where Hermitian and so are ¢ (¥), [1(X), this can still be viewed as analogous to the QM case:

P S

= dxdty (-3 = 1 [ @t e G = @t 6~ )
Well, it’s the same up to a factor, but alright. Obviously, [¢1(p), TI(")] will have the same result. But

even more importantly, they should also diagonalize the Hamiltonian. The I1? part and the ¢? part
behave equivalently:

fd3x HZ(J_C)) _ jd3x d?’ﬁ d3}5' eif(ﬁ+ﬁr)n(ﬁ)n(ﬁ,) — f d3x d?’ﬁ dgﬁ' e—if(ﬁ—ﬁ’)nf(ﬁ)n(ﬁ/)'
where we turned the p — —p and used I1* (5) = I1(—p). The derivative term reads in the same way
3 572 3, 335 7351 %P 4 (3 2P 4 (2
dix (Vo))" = | dx d*p dp' (Ve (p) ) (V'™ ("))
= f d3x & &' (Ve 5ot () ) (Ve (') )
_ f d*x &5 P (~ipe Pt (B)) (ip'e P p (7))
= f d3x d*p d*p' e P PEp o (B)p(B).

Altogether, we have

1 About the factor (2m)3: For Fourier transformations we will use the convention
F@) = [ GEf@e™, f@) = [ @x f@e
(2n)
=:d3p
We know that

[ @xev~ 5,

since for g = 0 the integral is infinite and for p # 0 the integral adds up all points on a unit circle in the
complex plane, which gives zero. Thus, the Fourier transformation of 1 is proportional to the §-function.
Let us call the proportionality constant ¢ and compute the inverse Fourier transformation:
! iz c
fdz’x e"P*=cf(p) = 1 - fd3ﬁ c5(P) eP* = Z)? s = (2n)3.
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H= % f d3x (nZ(f) + (V@) + mquz(a?))
1 (55
= 5 [ @xd%p ap e (MGG + 556 DSG) +m*$ D))
1
=5 | @P e @026 -5 (TG + 556 D) + 9 o))
1
= EJ a*p (NP1 + p*loB)I? + m?*|p(P)I?) = EJ a*p (IN@I? + (m? + pHdB)1?)
1
=5 [ @5 (I + o3le@P),
where we defined
wi=m?+p% |pl? =T
This Hamiltonian is now diagonalized, exactly like in the ordinary QM case.

The next step is to construct ladder operators. In analogy to the ordinary quantum mechanics case,
the relation should be

@) ~ (a) +a,), @) ~ i(a) —ap).

However, this cannot be right, because the right-hand side is Hermitian, whereas we already saw, that
¢ (P) and I1(P) are not: T (P) = ¢(—p), 11T (P) = I(—p). We need to fix this. How about

. 1 . .
b(P) = (e“"l’ta teTrtay)) =  ¢T(H) = 20, (e@rta, + et@rtal)?
This is still Hermitian, doesn’t work. Let’s try this:

. 1 . .
@) = —(eiortal, +emionta,) = $() = 5o (e7“rtay, + ertaf) = (=),
Wp p
. . —i . .
ne@) = z(elwptaip _ e—lwptap) = nf(ﬁ) — - (e—zwpta_p _ elwpta;) =(-7).

This works indeed!! As in the quantum mechanics case, we chose our prefactors to get the desired
commutator relation later. We can solve those equations for the ladder operators:

a, = et (w,p (@) + @), al, = et (0, @) - NE)).
Thus, the commutator reads
[apa},] = [eirt (0,0B) + M), e v (w,d(—5") — (-5 )|
= iwp(=[o@), 01 (E)] + [N(E), ¢ (B)]) = 21)*20,6( — B").
Plugging those equations into the Hamiltonian, it reads (recall that |T1(p)|? == T (B)11(p))
H= %fd%ﬁ (Il'[(ﬁ)l2 + wplq,')(p)lz) = fd3p (a_pa_p +a ap) = fd3p (apap +a ap)

1 1
= Ef d3ﬁ5(2agap +[ay,al]) = Ef d*p (afa, + 0,6(0)) = fdﬁ w,(ala, + w,5(0)),

1 Actually, the exponential factors are not really necessary, to make ¢ anti-Hermitian. At the end of this
section there will be a comment about this issue.
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where we used, that integration over p or —p is no different. We have now this infinite term ~ §(0)
appearing here. The workaround is to treat is as a constant and state that this constant always drops
out, when we calculate differences in energies - for we can measure differences only.

Finally, we should address the question, how the actual fields ¢ (x), [1(X) look like. We simply get them
by the Fourier transformation of ¢(p), [1(p):

H(F) = Jd3ﬁeiﬁf¢(ﬁ) _ fdﬁ (ellopt+pR)gl 4 oilapt=p9)q )
— fdﬁ (ei(wpt—ﬁf)az‘l; + e—i(wpt—ﬁ)?)ap) — fdﬁ (eip.xa; +e—ip.xap),
[x) = fdﬁ iwp(eip'xa; - e'ip'xap),
where I1(X) is found analogous to ¢ (¥) or by I1(x) = 9,¢(X).

We used the notation ¢(x), [1(xX) instead of ¢(x),I1(x) in the context of equal time commutators.
However, of course, the fields also depend on the time. In a more general context we will therefore
denote them in terms of the four-vector x instead of X. This is just a matter of notation and in general
it holds ¢ (%) = ¢(x), I1(X) = I(x), where in the latter notation the time-dependence is explicit and
in the former implicit.

Comment: If we are honest, we didn’t really need to include the factors e*'“»¢, when we constructed
our ¢(p) in terms of the ladder operators. However, in the end it worked out quite nicely, as we have
now factors of Lorentz invariant exponentials e’?* in the integral formulas of the out fields ¢ (X), I1(¥).
Since ¢ is a scalar field, it is Lorentz invariant and because of the Lorentz invariant exponentials, also
the ladder operators are Lorentz invariant. So, as it turned out, we need the factors e*“»¢, to make
the ladder operators Lorentz invariant!

4.5 Energy-Momentum Tensor

45.1 Conserved Charges for the Real Klein-Gordon Field
The conserved charges for the real Klein-Gordon field read

Q¥ = f d3xT% = fd3x (1 (0¥ ) — Ln).
If we plug in
1 m?
— Z(ghg)z — T 42
L=2(0"¢)" ——¢7
p(x) = fdﬁ (eP*al + e7P%q,), T(x) = fdﬁ iw,(eP*al — e7P*q)),

we get
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QY = f d3x dp dp' (_wpplv (ei(’”p')"‘a;a;, - e—i(p—p')'xapa;, — ei(P—P’)'xa;ap,
+ e‘i(p””)'xapap,)
ov
n

_ 1y (pi0+p)x T T o=ilo-p)x, 41 _ oilo-p)x T —i(p+p")x
2 ( P Py (e apa, —e apa, —e aya, +e apay

2 ,ilp+pDx T T —i(p-p")x t ilp-p")x 1 —i(p+p")x
m (e PP 0% apap, + e PP apay, + ePTP  apay, + e TP apap,)>>

1 . .
— = v( 2wyt T T T T —i2wpyt
= f dp 20, <p (e rapa_, +apa, +aya, +e P apa_p)

ov
n 2wyt 1t oot —i2
—T(p"pu(e‘ “ptala’, + apay + aya, + e"rtaya_y)

2( 2wyt 4T T T T —i2wpt
-m (e rray,a’, + apa, + aya, + e apa_p))>.
Let’s see at only one term, what was done here:

fd3x dp’ (_“’ppm(ei(mpl)'xa;a;' - e_i(p_p,)'xapa;r))

— deX dp’ (_wpprv(e—i(ﬁ+ﬁ')fei(‘*’p""*’pr)'xa;a;, - ei(ﬁ—ﬁ')fei(wp_“’pr)'xapa;;,))

[ @i (@ oy (56 + e *alaf, — 6G5 — el @) ayal,)

1 . 1 .
X Tt T — %, T ot T
_E(_pveLpr xapa—p _ pvapap) — Epv(eLZcup xapa_p + apap):

where we used that p® = w,, = w_,. Recall also that dp = d*p/(2m)*2w, and this factor 1/2w,, must
be taken care of when evaluating the §-function. Now, we also know that

w, =P +m? = p'p,=wi—p=m?
from which we find that the last terms proportional to n°" cancel and what remains is
v — 1 v t t 2wyt T T —i2wpt
Q¥ = dpz—wp(wpp (apay + apa, + e?“rtajal , + e~ apa_p)).
The latter two terms vanish due to antisymmetry when taking p - —p:
. 1 ; ;
f dp w,p’e?*rtalal, = Ef dp (wpp”e?®ptalal ) + wpe?@rtalal
1 ; .
= Ef dp (wpp¥e??rtatal, — w,pve?@rtal jal) =0,
since [a;, a;r,,] = 0. Thus, we get the conserved charge

1 1
Q= f dﬁz_wp(wppv(apag + a;ap)) = fdﬁ Z—%%PV(ZaZ% + [ap'a;;]) = f dp p"a;;ap.

where we neglect the constant (no operator) infinity from the commutator [ap, a;] = (2n)32wp6 (0)
as we did before.

24



4.6 The Fock Space

46.1 Commutator of the Four-Momentum Operator and the Creation Operator
We used the following commutator relation:

i) = a5 *lah o] = [ el + e ko |
=0

- [ a5 @m20,6G - ) p*af, = praj,
We get the relation for a,, simply by applying a 1 to this equation:
pra, = [Pt.af]" = [, P] = =[P, q)
46.2 Normalization
(plp") = (0]ayal,|0) = (0][a,, a,] + a},a,|0) = (2m)32w,86(B — B").
4.8 Causality and Propagators

4.8.1 Deriving A(z)

Using

@) = fdﬁ (eP*al + eP%q,),

la, a,] = [ag,a;,] =0, [ap,a;,] = (2m)32w,6(p — p'),
we find

A(x — y) = [(]5(96),(]5()7)] — f dp dﬁ' [eipxal'l; + e—ip-xap’eipf.ya;’ + e—ipl.yap,]
= f dp dp' (e *e™¥"V[af, ] + e P*e®"V[ay, af,]) = f dp (—ei G2 4 g=ip =)
S A2) = fdﬁ (e‘ip'z — eip'z).

4.8.2 Deriving A(z) for Complex Fields
Using

P(x) = fdﬁ (bfe* + a,e™¥), ¢t(x) = fdﬁ (ale* + b,eP¥),
[ap,a;, = [bp,bg,] = (2n)*2w,6(B — B'),
with all other commutators vanishing, we find
Alx —y) = [p(x), pT(M] = f dp dp' [ble™* + a,e”®*,al e®"Y + b,,e" V]
= fdﬁ dp' (e"p'xe_ip"y[b*, bp,] + e‘ip'xeip"y[ap, a;g,]) = f dp (—eip'(x_y) + e‘ip'(x_y))
S Al = fdﬁ (e‘ip'z — eip'z).

4.8.3  Vacuum Expectation Value of ¢p(x)p*(y)
Using the complex Klein-Gordon fields in terms of the latter operators, as well as a,,|0) = 0 yields
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(0l9@)#*1)]0) = [ dp dp' e~ e 0]ayal o)
= fdﬁ dp' e'ip'xeip"y<0|a;,ap + [ap, a;,”O) = f dp dp’ eipxgin"y (2n)32a)p6(ﬁ -p")

= fdﬁ e—ip'(X—J/).

Similarly, we have

(0]pT ()P (x)|0) = f dp dp’ e Ve *(0|b,b],|0)

= f dp dp' e" e *(0|b}, b, + [by, b}, ]|0) = f dp e~ -0 = f dp e =),

4.84 The Feynman Propagator
We defined the Feynman propagator

ST 0), 0 >y0 (| dBePED, 10>y

D —v) = = .
F(x =) {<O|¢T()’)¢(x)|0)’ yO > x0 Jdﬁeip(x—y)’ 30 > x0

This Feynman propagator can be written as (recall d"p := d"p/(2m)™)
1 —ip(x—
Dp(x—y)=fd4pme - (e=y),

Let’s see why (we state the result in the beginning, since it is easier to do the proof backwards). Note
that this is the first time, we integrate over the four-momentum, not the three-momentum with p,

fixed by po = /p? + m? =: w,. Thus, we do not assume this energy momentum relation here. Consider
1 1 1 1

Pz—mz=p§—ﬁ2—m2:pg—wzz%:(PO""“v)(pO_wP)'

Thus, our integral has poles at p, = tw,. We can avoid those poles, if we integrate p, along a contour
C in the complex plain: We will depart the real axis by an infinitesimal amount at the poles. If we do it
in the following way, we can construct the different cases x° < y° of the definition of the Feynman
propagator:

—%p I ~
C \yy > »

Let’s consider x° > y° and try to close the contour such that we can apply the residues theorem.! For
x° > y9 the exponential in our integral reads

e~ ipo(x°=y%)

1 The residue’s theorem states that

d = 2mi 1Zi), 1Zi) =
izf(z) eres(fz) res(f,z;)

1 n-1
— -1
(n—1D'dz" ez,

L
where the z; are all the poles inside C and we integrate counter-clockwise. n is the order of the pole.
Integrating clockwise gives an overall minus sign.

(z-z)"f(2)|
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Therefore, we might want to close the contour in the lower half plane, because if we sent p, = —ioo,
this exponential will give us zero and the contour within the complex plain doesn’t contribute. Using
the residue’s theorem to perform the p® integral, our total integral then reads (note that we get a
minus sign from integrating clockwise)

. 3 .
De(x —y) = fd4ﬁ ' e~ (x-y) = _zm-jﬂ : e~ (x=y)
(pO + wp)(Po - a)p) (2”)4 Po + Wp

= fdﬁ e—ip'(X—J/)

Do=Wp

Do=wp

This is indeed what we defined Dy to be for x° > y? (integrals with a measure dp obey the condition
Po = w,, per construction; it is redundant to explicitly write it down).

In the case of y° > x° we need to close the contour in the upper half plane to make the contribution
of this part of the contour vanish due to the exponential (it vanishes now for p, — ic0). Now we get
i

e~ (x=y)
(po +@p)(po — @p)

Dp(x —y) = fd“ﬁ e P =Y) = 2 f d*p

— W
Po p Po=—wp

= jd3ﬁe‘i”'("‘3’)| = fd3ﬁ eip~(x—y)‘ )
Do=—wp Do

=a_)p
The last step contains the following modification:

e—ip~(x—y)| = e—ipo~(x0—y°)e—iﬁ(5c'—37)| = eipo~(x0—y°)e—iﬁ(f—37)|p
0

Po=—wp Po=—wp =wp’

and finally, we rotated p - —p to get the desired result. And this is what we defined Dy, to be for y° >

x°.

So, the integral

J d4ﬁp2 _l — e~ ir(x=y)

gives the Feynman propagator when we integrate p, along C (where C is only the contour along the
real axes with the small detours but does not include the large half circle far at p, = +ico in the
complex plane). It is now more elegant to define the integral not as “when integrated along C” but to
integrate simply along the real axes and shift the poles an infinitesimal amount into the complex plain.
Of course, we must watch out, to shift it into the right direction, to be equivalent to “integrate along
c”

1 1
ﬁ .
(po + wp) (Po — wp) (po —(~wp + ie)) (po — (wp — ie))
We now have one pole at p, = —w,, + i€ and p, = w,, — i€ as desired. Finally, we want to go back from

Do, @p to p, m in the denominator:

1 1

1
(Po + wp = i€)(po — wp +i€) (po + (w, — ie)) (po —(wp — ie)) Cp2- (w, — i€)”
1 11
pE — wZ + 2wyie + O(e2)  p2 —wi +ie p>—m?+ie

where we changed € — €/2w,, which is still infinitesimal. In this language, we can write the Feynman
propagator as
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Dr(x—y) = fd‘*ﬁpz

—m? + e

e~ (x-y),
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5 QUANTIZED DIRAC FIELD

5.1 Quantization of the Dirac Field

5.1.1 Expression for the Ladder Operators
We can give the ladder operators as

Agp = ei“’lﬂtﬁap)/ol/)_(ﬁ). b;p = e_iwptﬁapy0¢+(ﬁ):
PE) = f d3x eEPHY(R).

For proving this, we will plug our ¥ (x) into those expressions:

Qap = Pty P~ () = j d3x Py Y (F)

fd,g‘x AP’ Tapy® (bl v5ei® D% 4+ g ug e~ —P)¥)
1

2w o
Za) S UgpY (b(, V2 opetr +aapup).

p

In the last step, the d3x integral was evaluated to turn the exponential into §-functions, which then
where used to evaluate the dp’ integral. Now, we use the normalization condition of Dirac spinors
Ty —
u'u = 2w
p}

Ugpy ug = ulpug = 2w,68,
as well as
20,y 12, = gy (wpy® — 8 + VB + wpy°)v2,
The first two terms in the bracket yield, using i1, ( — m) = 0,
ﬁap (wpyo - ?ﬁ) = ﬁap? = 2_lfz.'z)"n'
The last two terms yield, using ( + m)v, = 0,
(VB + wpy°)v2p = (7P + wpy°)vg = (—VB + wpy°)vy = pvg = —myy.
Thus, we get
20pTapY V%, = tgpy(m —m)vZ, =0 & Upyy°vZ, = 0.

Using those relations, we find

1 .
— t = 0,0 ,i2w,t = 0,0 | —
Agp = 2% bg —p Uapy VZp e PP + agp UgpyY Uy | = Qgp,
p =0 =200,89

what was to be proven. In the same way, we find
bl = e 5y W () = [ @ e X iy ()
f d3x dp Vypy (bdpl el®'-P)x 4 g ug,e—i(p'+p)‘x)

) 1
—i2wyt) — L Y, S
— UapV o(p} oU5 + ag_pul,e”2Ot) = — bl vl vg = by,
Za)p pr
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5.2 The Four-Momentum Operator

5.2.1 The Four-Momentum Operator of the Dirac Field
This is the analogous calculation to the one in (>4.5.1). Using the Dirac Lagrangian £ = (i8 — m)y =
0 we find the energy momentum tensor

THY = oL vy oL vy — Lr]“v—il,l—)yﬂa"l,b.
FICED)] w) a( ¢)

Thus, the conserved charge, i.e. the four-momentum operator, reads
V= fd3x TV = fd3x iptovy
- j d*x dp dp' (—p™)(agpup”eP™ + bayvy “e~ ) (b, v — agpuge )
— [ ap it @66 + P r e al bl v
— 5B — pell@r—wiqh a(,p,u “ug, +6(p - pel@p=wptp ber,v v,

—5(B + "’)g—i(“’p“"p')tb paap,vr-,r up,)

jdp—( pY)(—e?“rtal b; pup v, aeragpu ug + b, blpv;“ v
—i2wpt
+ e~ by g p Ui “u%p)
We already saw in (>5.1.1) that
Ugpy ug = ulpug = 2w,05, Ugpy've, = qupv » = 0.

Thus, we find
pv =fdﬁ pv(aipaap b, pr)

5.2.2 The Four-Momentum Operator using Anticommutator Relations
Using

{Bap by} = bapbaps + bipibap = (21)* 20,6468 — B,
we can give the four-momentum operator as
PV = f dp pv(a}:paap - bapb;p) = f dp p¥ (aZcpaap - (—b;pbap + {bap' b;p'}))
= f dp p¥(al,aey + blybay),

where we again neglect the infinite constant.

5.3 Anticommutator Relations

5.3.1 Anticommutator Relations of the Ladder Operators
We assume

W), YT ()} =6 - )

and want to show that we do actually get this result if we use
{aap’ aIP'} = {bap' b;p’} = (27-[)32(‘)1366!06(13 - ﬁ’)
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and all other anticommutators zero. We will also need the completeness relation of the spinors,
upuy =p+m, vivy =p-—m.
If we recall our expansions in terms of the ladder operators we get
op’

VIGORAIOIE f dp dp’ {bipve™™ + agufe P, afyuf e + bop vy e}
.fdp dp’ (e®e®’ Yvpu ; {bap’ op'}+eip'x -’ Tvp, plo{bap’ bopr}
+ e Pre® uguiaqy, agy ) + e e ugu aup, bop )
= fdﬁ (ein(x—y)vgggyo + e—ip~(x—y)ugﬁgy0)
= j dp (e @ (p —m)y° + e~ (p + m)y°)
If we now rotate p — —p in the second term of the sum in the brackets, all we're left with is
{lp(x),w'r(y)} — j dp (eip.(x—Y)wp + eip.(x—JI)wp) =8 — y)_

There seems to be a time-component in the exponent, which is not rotated but still catches a minus
sign. But recall that those anticommutators are equal time anticommutators, so actually the time-
component in the exponent is zero.

5.4 The Fock Space

5.4.1 Commutator of the Four-Momentum Operator and the Creation Operator
Using the identity

[AB,C] = A{B,C} — {A,C}B
yields
[P,al ] = f A’ p'* [ah ey, + Blpsbapn ]
= [ a5 v (b (aap a3y} = 0l )y + Bl (g 0} = (8Ll )
f dp' p'™ alp (21)32w,8,,8(F — B') = p* al,.
We get the relation for a, simply by applying a 1 to this equation:
prag, = [P*al,]" = [agy P#] = —[PX ag).
bep has the same commutator relations:
[P# b} )] = f dp' p'™* [aly aaps + blybapn bl
= | a5 v (b (0 Dy} = (b by Yo + Dl (b ) = (bl Dy i)

= de, i b-l-pl (Zﬂ)32wp6a06(p p’) =p* b;p

5.4.2 Normalization
(a,plo,p") = (0]agpal,|0) = (0|-al, aep + {aap aly }0) = (2m)°20,6,,6F — B").
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5.5 Causality and Propagators
5.5.1 Deriving A(2)

Using the field expansions in the ladder operators as well as their commutator relations and the
completeness of the spinors,

upuy =pt+m, vivy=p-—-m,
yields
Ax —y) = {$(), ()}

fdp dp’ {bJr vye x4 aapuge‘ip'x, aip,ﬁg,eip"y + bap,ﬁ{,’,e‘ip"y}
= fdﬁ dp’ (elp'xe_lpllyvgvp'{bap' bop:} + e_ip'xeip"yugﬁg'{aap’alp'})
= J dp (e T Vpapd 4 o~ E-Vyaza) = f dp (eip~(x—y) (p—m) + e PEN(p+ m))
= (i8, + m) f dp (—e®?" &) 4 e=i @) = (ig, + m)A(x — y)

e Al2) =(ig, +m) f dp (—e? + e~'P%) = (i3, + m)A(2).

5.5.2 The Feynman Propagator
Using the field expansions in the ladder operators as well as their commutator relations and the
completeness of the spinors,

upuy =pt+m, vivy=p-—-m,
yields
(0]w()P()|0) = f ' (0|(bl, vge®™ + agufe ®*)(al,ug,e®" " + b, vge " 7)|0)
= [ dpdp e e ugag (0lapal, o)
B f dp dﬁ, e—ip-xeip"yugagl(q_alp,aap + {aap: a;pr}|0) = f dp e—ip~(x—y)ugﬂg
= f dp e= P (p+m) = (id, +m) f dp e= =) = (ig, + m)(0]|p ()T (3)|0)

as well as

(O[F»)P@)|0) = f dp dp' (0(al,a8e®Y + bayose ) (bl v + agyug,e~?"*)|0)
- f dp dp’ e=P7 e'®" ¥ (0| bapbgyi|0)
— [ apdp e 07e? *Ggug 01 -blysbay + {bays iy }0) = [ d e —m)
= (=i, —m) f dp e ) = —(ig, + m)(0]|p* ()P (x)|0).

The last equal sign makes use of (>4.8.3). Thus, we find that we can write

Dr(x —y) = {+<0l¢(x)lmlo>' rEY (0BT o), 202 y°
’ —(0[pMY()[0), y° =x° (0]pTGIP|0), ¥° = x°
= (i0x + m)Dp(x — y).

= (io, + m){

5.5.3 Elegant Form of the Feynman Propagator
Since p*p¥ commute, they are symmetric in g, v and we get the identity
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2 UV 1 UanyV 1 Uy V UanV
p2 =¥, 7p"p =E(Vuyv+yvyu)p p =§{V,uyv}p p¥ = guwpb*p

with which we can write!

pt+tm _ pt+tm _ pt+m _ p+m
pz—m2+ie_p2—(m2—i6)_pz—(m—ie")z_(p—(m—ié))(p+(m—i€"))
1
S p-—m+ié

Since € is still infinitesimal, we can of course write again € instead of €.

1 This appears to be scary: We have a matrix in the denominator! But we simply understand this object as

we derived it. If it makes us feel better, we could define this object as
1 pt+m

p—m+ié:p2—m2+ie'
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6 QUANTIZED EM FIELD

6.1 Gauge Fixing

6.1.1 Conjugate Momentum of the Electromagnetic Field
Using the Lagrangian £ = —F,,,F*¥, the conjugate momentum reads

. oL oL 1(6A 5.4)
VT 94Av T 4(9%4v) 20T TR 5(904v)

1 1
= - E (aan - aKAa)(gg&f - 6(’;63) = - E ((aoAv - avAO) - (avAO - aOAv))
= _(aoAv - avAO) = —Fy,.

(aO'AK _ aKAO')

6.1.2  Euler-Lagrange/Maxwell equations in Lorentz Gauge
In section 3.6 we saw that the Euler-Lagrange/Maxwell equations in general read

a0, FVH = jH,
If we impose the Lorentz gauge d,A* = 0, we find
j* =0,F"* =0,(3VA* — 0*AY) = 0,0VA* — 0*0,AY = 0,0V AH.

6.1.3  Euler-Lagrange/Maxwell equations with a modified Lagrangian
If we consider the modified EM-field Lagrangian

L=—tp v _ A g any? i g
=73 w _E(u )_]u )

without imposing the Lorentz gauge, we still get the same equations of motion. When evaluating the
Euler-Lagrange equations, note that we can reuse our result from (>3.6.1) and just add the
contribution of the additional term:

L v 2 o, o[ (A(GA")Z)
DAK a(avar) e % v a(@vam\_ 2%

from (>3.6.1)

A
1 % — AV
=—j,+0 FVH-I-Za (0(6”14“)

(agA")(axA")>

] d ]
=—ju+ 0"k, + 207 ((OJA")W (nKnG”A")> = —j, + 0VF,, + 11,0V 9,A°
= —ju + 0 (0,4, — 8,A,) + 10,0,4° = —j, + 8V 3, A, + (1 — 1)3,0"A, = 0

A was introduced as some arbitrary parameter. Different choices of A are also referred to as different
“gauges”, although this has nothing to do with, for example, Lorentz or Coulomb gauge. If we choose
the Feynman “gauge” 1 = 1, we find

9,0V A = k.

6.1.4  Canonical Momentum with Modified Lagrangian

We want to calculate the canonical momentum of the modified Lagrangian from (>6.1.3). For this, we
can reuse the canonical momentum of the original Lagrangian from (>6.1.1) and simply add the
contribution of the additional term:

oL _ . A0 (6,44)(3,A7) = F A(aAM)a(a,,Aa)
04v — % 20(a04v) V¢ oW #70(0%Av)

= —Fo, — A(0,4")85067 = —Fo,, — A(9,4%)8,0.

I, =
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In the Feynman ,gauge“ A = 0 this yields
n° = —g,A*, ' =—F°%,

6.1.5 Even Simpler Lagrangian
0L av 0L =—j,— 0 g 1(6 AN(A°A) ) = —j, +0V(9,4,)
a4k~ % aavamy = In T 9 Gavam\ T2\l = e ol
= —ju + 0V (0,405 8% = —j, +0VD,4, =0
& 0,0VAH =

9(9°4%)
FIGDD)

6.1.6  Canonical Momentum of Simplified Lagrangian
The canonical momentum now reads

oL 10

0
- — = — _ HACT) —
fly dAv 204v (9%u45) 3(0°4v) (0#47) = —(9o4)
= _aoAv = _AV'

W(aoAa) = —(0045)67

6.2 Quantization of the EM Field

6.2.1  Expression for Ladder Operators
If we plug in the expansion

At (x) = fdﬁ (a;[pefpeip’x + alpsfpe‘ip’x),

we can proof that the following expressions for the ladder operators are valid for physical polarizations
(90uf = gOuf — f0,9):

aj{p =igy, - J d3x e‘ip"‘goA(x) =gy, j d3x e Px (A(x) + ia)pA(x))
= iglp . f dﬁ, d3x (iwpl (aI,pISArprei(p’_p)'x — a}llplg}llple_i(p’*-p)‘x)
+ ia)p (a/'{"plg;{,p,ei(p’_p)x + aﬁ,p,gﬁ,p,e—i(pr+p)~x))
. ~ . '[' - - -] - -
= igy, - f dp’ (2m)3 (prr (al,p,e,yp:S(p =P = ayprgyre” PSP+ p’))
+iw, (a;[,p,slrprd(ﬁ -p)+ alrp:e,ypre‘iz‘“v%(ﬁ + 15’)))
——le -(aJr e — Qy e 29t 4 al, e fan e e‘iz“’z’t)
T %M ApA'p A, —p<A,—p A'pA'p A —p<A,—p
_ + _ T
= —a/-{/pS;{p . S;{Ip = —al,pnmr.

Obviously, for physical polarizations 1 = 1,2 we get a true statement. We find the annihilation
operator by Hermitian conjugation:

Ay = —i&y - f d3x eP*9,A(x).

6.3 Choosing the Polarization Vectors

6.3.1  Sum over the Physical Polarizations only
From the completeness relation
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- — M u u
77’” 77 g)lpel’ EOpSOP E/l Sﬂp E3p E%/p
=12
we find, by plugging in s(’)‘p = n* and egp =pt/(p-n) —n*
p* r’
2 efpelp - + eopeop - eé‘p£3p -n* +nkn¥ — (— - n”) ( - n")
A=12 p-n p-n
By v "
=—n‘“’+n“n"—(p p —n“p _P n"+n“n")
p-np-n p-n p-n

ptp” | nfp” +pfn’

_pHv _
g (p -n)? p-n

6.4 Commutator Relations

6.4.1 Commutator Relations of the Ladder Operators
We found that the conjugate momentum can be given as

U — _ Al — _ i = T U ipx _ U —ipx
[* = —AH = lfdp wp(alpslpe Qrp€xpe )

If we now plug the field expansions into our commutator relation we get the correct result, if we use
the commutator relation

a3, @}y | = =270 20,m,008G5 — ).

of the ladder operators (thereby we want to show, that those are alright). We also need the
completeness of the polarization vectors nla'gfpg/{’,p = v,

[AK (), TV ()] = —[A# (%), 4 ()]
—inﬁ dp' [(aj{ efpelp'x + a,lpsfpe_ip'x), (ai,p,ei’,p,eip"y — alrprgi’,p,e_ip"y)]
—lfdp dp’ ( eipxe=iv' yea [a/lp,alfp,] + e pxeip’ 3’5/1 &) r[alp,aj{, ,])

fdp ip-(x— y)gll gv + el (x— Y)g ) inkv S(X—y)

Note, that this is the equal-time commutator, as indicated by writing A*(¥) instead of A*(x).

6.5 The Four-Momentum Operator

6.5.1 Calculating the Four-Momentum Operator
Consider our simplified Lagrangian for the Sourceless case j, =

1
L= —E(aﬂAv )(@+4Y).

reads

, oL v e g 2(9cAy )
T” - 6(6”140) (a AO‘) LU” (a An) a( Ao-)

= —(@447) (@A) + 5 (8,4 )" AW

(6VAJ) - LTI’W

and we have the four-momentum
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f dBx T = f &x (=A@ A,) + = (a A, )(aJA")nO")

The second term is always zero, since the two derivatives bring down a factor p,p'® which is turned
into a +p,p? by §-functions originating from the integrals

f d3x efi@'tP)x

Since the EM field is massless, p,p? = wj — p* = m* = 0 vanishes. What remains is the first term:

— 3, i
_ f d3x A°(0VA,)
_ 3 P t .o ipx
fd xdp dp lwp(alpslpe
— appef e ) (ip™ (al,  exryrge®* — agryegy e X
ApAp p A'p'“A'p'o Ap €Ap'o
— 3 = 1 w( T Tt o i(p'+p)x Tt o i(p'-p)x
= fd, x dp dp’ wyp (a/lpal,p,e,lpe,yp:ae ®'+p) — WAy EipEarp' o€ ®'-p)
T g —i(p'-p)x 5 —i(p'+p)x
— Q3,007 EpEN'p! o € ®'-p) + Ay ExpEnrp’ o€ ®"+p) )
v 3(,1 T o =1 2 2wt T o Y-
jdp ap’ w,p" (2m) (alpaﬂprslpslfpfgﬂp + plete®r —a,lpalrprelpelrpraﬁp —-p)

- - - - —i2 t
a/’lpaﬂ.' 1€y a0 (B — D) + Qapaiip €1pErp o6 (B’ + e P )

— ~ pp t 1 o 2wyt t .o T o

= fdp S (_alpaa’,—pgﬂpgﬂ.’,—p,de P — @@ N po — LW pERpE'po
14
o

— Cllpaﬂ_”_pg/lpé'l’,_p’o-e

_fdﬁ(; pv(

g
t Gy —pE1pEX —p,o

—iprt)

2wyt

T T Tt o
Aap A1 AN + aqpapar + Gp byt —pEapEr —p,a€
e—iprt).

Now the last two terms vanish due to antisymmetry when taking p = —p. Note that we can rename
the summation indices A & A'. We also throw away the infinite constant (i.e. the commutator) as usual

and are left with

_ ~wpp” t 1) = 5 t
- f dp 20, M (Zalpal’p + [aAp:apr =— | dPP¥ Max a3, axp-

6.6 Operators Acting on States

6.6.1 Commutator of the Four-Momentum Operator and the Creation Operator
[P, ajl.p] = —fdp p" n* [a/‘l’ 'aﬂ”p"aap]

- f dp' p" n* " (a:{’z)’[afl"l’" afy] + [a/-{’p” a;lrp] aﬂ”P’)

f dp' p"” iV afy (~2m)*20m228 (- B)) = p¥ 0} a},, = p¥al,

The commutator with a,,, is got by applying 1 to this one.

6.7 Gupta-Bleuler Method

6.7.1 Why ad,A*|y) = 0 is no good Condition
If we adopt the decomposition A# = A™#* + A™#, where
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+ — = K ,—ip- - — 5 T K Lip:
ATH(x) = fdp Qp&),€ wx o ATH(x) = fdp aapslpelpx,
we find that not even the vacuum state would obey our condition for physical states:

0,A*10) = 9, A*#|0) + 9,A™#|0) # 0,
=0 #0
because A™* contains the creation operator (also after derivation).

6.7.2  Calculation of 3,4™#
We constructed and chose our polarization vectors such that

p-n, A1=0
p-s,lp={ 0, A=1,2,
—-p-n, A=3

using p? = 0. Thus, we can write

auA“‘ = 6ufdﬁ a;lpsfpe‘ip'x = —ijdﬁ Py alpsfpe‘ip'x =—i j dp e P*(p - n)(aop — a3p).

6.7.3  Physical State Expectation Value of the Four-Momentum
Using

aopl) = azy ), (Plaf, = (lal,
we get
WIPY) = = [ ¥ 0 (plaf,an 9)
= f dp p¥ Il’|(_aop010p + aIpalp + a;rpazln + a;pa3p)|lp>
= f dp p¥ 1/J|(—agpa0p + aIpalp + a;rpazp + az;paop)hl))
f dp p* n* (lag, ap|¥).
6.7.4  Physical States have only positive Norms

We saw that the state |0,p) = aODIO) was the one which had a negative norm {0, p|0, p) < 0. We will
now show that this state does not fulfill the physical state condition, which was shown to be equivalent

to (aop - a3p)|1,l)) =0:
(aOpl - a3p1)|0) P) = (aOpl - a3pl)agp|0) (aOpQOpr + [aOpn aop] a()pa3p/ [a3pn ag)-p])l())
= —(27T)32wp5(ﬁ =) (Moo — M30)10) = —(2”)32wp5(P p’)0) # 0.
6.8 Causality and Propagators

6.8.1  Deriving A(z)
Using the completeness relation r)“'s/{‘ps){,p = phv;
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—y) = [A“(x) A" (y)]

f dp dp’ alpefp e + a, efpe ip-x a*, ,elr eV + ay 15/1, eiP 3’])
= fdﬁ dp’ (e‘p'xe‘ip"yefpsj{/p/ [aip,alrpr] + e“'p'xe"p"yefps;,p, [a,lp,a;r,p,])
= f dp dp' (2m)*2w,n 18P — ﬁ’)(eip'xe'ip"ysfpe){,p, - e“'p'xe"p"yefpsj{,p,)
= fdﬁ nw(ein(x—y) — e—ip~(x—y)) = —n*A(x — y).

6.8.2 The Feynman-Propagator

Using the completeness relation n’lysfpg/‘{,p = n*¥ as well as (>4.8.3), in the Feynman propagator we

have the matrix elements,
(OlA”(x)AV(y)m)
jdp d aApEAp lpx + al E)L e ~ip: ) (aIrprS/{}lpleip"y + a/lrpre}p,e‘ip"y) |0>
- fdp p lpx lp ygl EA’ '<0|alpal’p’|0>
=jdﬁ dp’ e~xeP Vel oV <O|aT a +[a al ]|0>
p=A'p’ A'p'“Ap Apr Garp!
= jdﬁ dp’ e"Pxel®' Vel e (—(Zﬂ)32wp77u'5(5—20 = —n’“’fd e~ (x-y)
= —n""(0]p(x)p*(1)]0)
and

(OIAV(}')A”(x)IO)

fdpd (aﬂ. gﬂpe iy +a)L SA ipy) (aIr rgfr ,elp +aﬂ'l 18/1, e lp’~x)
— ~ 3~ _—ip- in'- u t
B fdp dp' e~ Ve EipEary <O|alval’p'|0>
— = g1 —ipy ipx v M t +
- f dpap e trer ety <O|a/1’p’aflp M |0>
= fdﬁ dﬁ’ e_ip'yeip""s){pef,p, (_(Zn)32wpnﬂﬂ’5(ﬁ_ ﬁ’)) — _n;w f dﬁ eip-(x—y)
= —1*{0|¢* () (x)|0).

Thus, we find that we can write

)

De(x—y) = {<0|A”(X)AV(3’)|0). x>0 o {<0|¢(x)¢fr(y)|0)’ x0 > 30
F y (0]14Y (M)A (x)]0), y° =x° <0|¢T(y)¢)(x)|0>, y0 > 0
= —n*'Dr(x — y).
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7 INTERACTIONS AND THE S-MATRIX

7.2 Interacting Fock Space

7.2.1 Completeness Relation
The completeness relation of the Fock space with the vacuum |Q) and the N particle state |4, p) with
total momentum p reads

1100l + ) [ di IANAB
A

The sum over A is formal and includes integral over continuous parameters like the relative momenta.
The energy w, inside the measure dp is in this case defined as a)zz,l = p? + m2, where my is the
invariant mass of all the particles,

N 2
i=1

p; being the four-momentum of particle i. Thus, the measure dp depends on the configuration of the
N particles and thereby on A, which is why dp, carries this index.

7.2.2  Vacuum—Momentum State Matrix Element
For a general Lorentz transformation U (A, a), we assume axiomatically

U, a)p(x)U (A a) = p(Ax + a).

Furthermore, we now from section 2.4 that simple translation can be written as U(1,a) =
exp(—ia - P) with momentum operator P. The vacuum state |) is invariant under Lorentz
transformation. Let U (Aﬁ) be a Lorentz boost which takes the rest frame to momentum p. Then, we
find

(P01, P) = (2™ P p(0)e™"|2,5) = (Ql$(0)|2, e~
= (0|u(az)p(@U(85)|2,0)e ™ = (Q]¢(A;0)|2,0)e~* = (QIH(0)I2, 0)e 7.

7.3 Kallén-Lehmann Spectral Representation

7.3.1  Vacuum Expectation Value of two Fields
Using the fact that we can redefine our fields such that the constant (Q[¢p(x)[Q) =
(Qle®Pp(0)e~*P|Q) = (Ql¢(0)|Q) vanishes, we find

(USRI = @IPEINAUDIN + ) [ i @IS DA A1)
=0 A

=" [ 0Ip@In Pz e =3 7, [ dp e
A A

Except for the sum over 1 and the Z;, this is the same formula as we had in section 4.8 for the free
vacuum expectation value (0|¢ (x)$(y)|0). The corresponding time-ordered expectation value was the
Feynman propagator Dr. Thus, the interacting time-ordered vacuum matrix element can be given as a
sum of free Feynman propagators:
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QUTYIPWIN) =T ) 2 [ diy e @ =T 3" 2, QlpPMION;
A A

= > 2, 170 = ) 2 Dp(x = ymF).
A p!

7.3.2 The Mass Spectrum
We can write

QTSI = f dM? p(M?) Dy (x — y, M?),
0
where

p(M?) = > Z; 6(M? —mj)
Z ;

is the mass spectrum. If we plug this formula for p(M?) in, we easily get our old formula for the time-
ordered matrix element back.

7.4 The S-Matrix

74.1 Impact of the S-Matrix on “in” and “out” States
Consider some arbitrary state |ai), which is created out of the vacuum by some combination F, (¢.)
of fields ¢. Using ¢, = ST1pzS*! and S*|Q) = |Q), we find

|as) = Fu(p0)1Q) = B (ST 05%1)10) = STIF,(05)5110) = ST R (92)|Q) = S az).
If we take this equation and multiply it with (ai | we find
1= (ai|S™|az).
If we perform Hermitian conjugation on both sides, we find
i\t
1= (o] (57 s = aels2) 1),

where we just turned the + and + sign upside down in the last step, i.e. + - + and + — . Since those
two equations hold for arbitrary “in” and “out” states, we can deduct

(ap|STaz) = (as|(SD)az) = sl=st o sts=1.

7.5 LSZ Reduction

7.5.1 Form of Creation Operator
In 4.4 we had the expression

at, = et (w,(B) - iN(H)),

which holds for free scalar fields, and we know that for a scalar field we have I1(x) = ¢ (x). Plugging
in ¢(p), 11(p) in terms of ¢(x), [1(x), i.e. the Fourier transform, we find
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af = e79rt (w,p(—p) — iN(=p)) = "t (w, ¢! (B) — i (7))
= f d3x e~ i@ptei®p (wp¢(5c)) - il'[()?)) = f d3x e~ 1@ptelxP (wp¢(55) - il'[(ic’))
- f d3x e~ (@, p(3) — i$(0)) = —i f d3x e~ P, (%),
where gguf = gd,f — f0,9. Note that we wrote ¢ (%) instead of ¢(x) since the integral is only over
d3x, but the time-coordinate is still there implicitly and we can also write ¢(X) = ¢(x). Also, we

omitted the indices + for the “in” and “out” fields/ladder operators. The calculation above just holds
for any free field and “in” and “out” fields both meet this condition.

7.5.2 ldentities for commuting Ladder Operators
We are now going to show the following four identities:

_ — t _ T = _
Aiq ~ A-g = Iy e T
_ — T _ T - _
Aqlpy,pn ~ Ipyypn@-q = Ipy,ppar A qlpypn = 1pypn=q = Ipy,.pp—a-
where

Ly, = fDxl,pl Dy, p, TP(x1) - P(x) and Dy, = iZ7Y2 d*x e™*P(O, +m?).

Thus, we can commute the “out” ladder operators with the integrals I, _, and at the same time turn
them into “in” ladder operators. However, while doing so we get an extra term, which is just another
integral I, ., . with anadditional momentum g. Note that this additional index of I, _,, . justgives
an additional factor in the integral. If the additional momentum q traces back to the commutation of
creation operators, we get this additional momentum with a minus sign, —q, and we get a overall

minus sign in frontof the [, ., _,.

Alright, so let’s start to proof the identities above and thereby derive the formula for I, :

Iy=ayg—a_g4= in3Z eiZ99, ¢, (z) — ijd3z eiZ99,¢_(2)

t—oo t—o>—o0

i7-1/2 (lim — lim )Jd3z eZ49,p(z) = iZ‘l/Zf dt aojdszeiz'q‘?o(l’(z)

iZ_l/z f d4Z 00 el'Z'q(g)qu(Z) = iZ_l/z f d4Z ao(eiZ.qao(p(Z) - ¢(Z)aoeiz’q)

i7-1/2 J d*z (eiZ'qa§¢(z) - ¢(z)6§eiz'q) =iz"1/2 j d*z eiM(ag + a)é)d)(z)

iz71/? f d*z e (95 + G2 + m*)¢p(z) = iZ~*/? f d*z e'#9(02 — V2 + m?)¢(2)

iz-1/2 f d*z e#1(92 — V2 + m?)¢p(z) = iz~ /2 f d*z eZ9(0 +m?)p(2)
= sz,q ¢(Z)

Here, V is the nabla operator acting to the left, such that e =*? (—(ﬁz) = p2. We then got from this Vto
the usual right-acting V by integration by parts (twice). The equation for the creation operators is got
simply by Hermitian conjugation, using the fact that I;r = —I_4. Next, we can look at the third identity:
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I

I =0y ql P1-Pnl—q

P1,-oPn.q - P1,-9Pn -
= i [ Dryp, D, 87 (€798, b (ITPC01) = ptn) = TP D) 10, b (2))
=iz (Jim = 1) [ Dy, =D, @7 €95, THCx) = pxn)P(2)

= iz ] dzo 0, f Dy Dy d2e295, T(x) - d(r)b(2)

= iz f Dy -+ Dy d2 3,793, T(x1) - P(r)b(2)

i7-1/2 J Dy p, Dy p Az eZ9(0, + m?) T (xy) - p(x,)P(2)

- f z)xl’pl DxnvanZ'q :T(;b(xl) ¢(xn)¢(z)

Here, we used 9, ¢4 3zof(z) = e#9(0, + m?)f(z), which was derived along the way of deriving the
formula of I, above. Finally, what is left is
_ .t T
~Ip,,..pn—a = Aqlpspn ~ Iprpn@-g
= =i [ Dy, Dy 2 (67798, 6, (ITH1) - Bx)
—TP(x1) -+ ()90, ¢_(2) )

= =iz (Jim — lim_ ) [ Dy,p, Do, 42 €798, TH00) - BB
=iz " 208y, [ Deypy Dy 2 €795, T(x1) - S

= 27 [ Dy, Do, 442 0y, TR0 - L1 )P2)

=i [ Dy, D, A7 €D, + D) TP ) 92)

= — [ Drop, Dy D THC) = 1))

7.5.3 Disconnected Parts
Using the identities from (>7.5.3), we can show that, for the example of a 2 — 2 process,
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Spa = (Q|a+'q1a+’q2a:p1 —p2|9> (Qlayq, (a- qz +1qz)a—p1 :pzm)
= <Q|‘l+,cl1‘l—.fzz‘1J£ p @ —p2|ﬂ) (Qlasq,1q, al p1 —pz )
= (Q|a+,q1(a:p1a—.qz +la_g, —plDa— p.|Q) + (Q|a+,q1(ajr,p11qz + qu,—pl)a:pzlﬂ)
= (Q|a+,q1ai_p1 a_gq,a _p2|Q) + (2n)* 2w, 8(P; — qz)(ﬂ|a+,q1a:p2|ﬂ)
+{(Qas.q,a] p, lg,0% 5,12 + (@ as g, 1, -p,0% 5, 12)
= (Qfayq,aly, (alp,aq, + [a—,qz'a—.pz])m) + (2m)*20p,8(B1 — 42)(0 2y g,0L 5, |)
+ (Ql(ai.plahql + [a+,q1'ai.pl])lqza:pJQ) +(Q[(Ig, -p,8-q, + qu,—pl,ql)at.pzlﬂ)
= (21)32w,,8(B; — 3:)(Q]ay g,a’ 5, |Q) + (21)320w, 6B, — G2)(Q]ay q,a ,,|Q)
+ (2m)* 2wy, 6(B: — ‘71)(9|1qza:p2|9> +(Qlg, -p, a—,qla:pzm) + (Q|1qz,—p1,q1 al,,|)
= (21)32w,,8(B; — 3:)(Q]ay g,a’ 5, |Q) + (21)320w, 6B — G2)(Q]ay q,a 5, |Q)
+ (2m)%2w,, 6@y — d)(Qal 1, + 1, -, |Q)
+{(Qllg, -p, (@l p,a-q, + [a—q, alp,DIQ) +(Qlal g, -p,0, + Tap-prar—p, 1)
= (2m)32w,,8(P, — dz)(ﬂ|a+,q1a:p1|ﬂ) + (2n)*2w,, 6 (P, — qz)(Q|a+,q1a:pz|ﬂ)
+ (21m)32wp, 6By — G1)(Q]1q,—p,|Q) + (21)320,,6 (B — G)(Q14,-p, |Q)
+ (I, -, q1-0:19)
= (21)32w,,8(B; — G.)(Q]ay g, al 5. |Q) + (21)32w, (B, — G){(Q]ay 4,al Q)
+ (Zﬂ)32wp15(ﬁ1 - 671)<Q|a+,q2a:pzlﬂ> - (Zﬂ)gzwp15(ﬁ1 - ‘71)(2”)320);;25(132 - ‘72)
+ (Zﬂ)32wp25(ﬁ2 - 671)<Q|a+,q2a:pllﬂ> - (2n)32a)p25(ﬁ2 - ‘71)(2”)320);;15(131 —q1)
+ (I, -y 1, [2)-

In the last step, we used

(Q|a+.qa:plﬂ> = (Q|(a—,q + Iq)at.pm) = (Q|a—,qa:p|ﬂ) + (Q|Iqa:p|ﬂ)
=(Qla’ ja_ 4+ [a_q at ]|Q) + (Qal 1, + 1, |Q) = @r)32w,6 — @) + (I, -p|Q)

= (Q)l,-,|0) = —2n)32w,6(F — §) + (Q]ay 4al Q).

7.5.4  LSZ Reduction for Fermions
We now want to repeat the calculation for the Dirac field. We found in (>5.1.1) that the ladder operator
aqp can be given for free fields as

Gap = Pty Y (B), PEG) = j dPx e PRy (3),

and from there we easily find the Hermitian conjugate aip'

aly = eyt @Oty = e [ @x P D gy = [ dx X @Y iy

Using this expression for the “in” and “out” ladder operators, we now can calculate?

1 For fermions, we need to introduce a new factor Z and we call it Z,.

44



a]:’aq — a:aq = dex e, ()Y gy — f d3x e~ UP_ ()Y g
= z;V/? (th_glo _ tEIPw) f d3x e UGy gy = 252 fidt 3, f dx e NP ()Y Oty
=7,/ f d*x 0pe NP ()Y ugq = Z; /? f d*x (e™™99,p(x) + P(x)dge "> 1)y uyq
= 22—1/2 f dx J;(x)(éoyo + aoyo)uaqe—ixq _ 22—1/2 f dx llj(x)(éoyo _ iqoyo)uaqe_ix'q
= 752 [ B0 Gy + i imugge
=2z,"" f d*x P(x)(0oy° — Biy" — im)ugqe ™4
= 22—1/2 f d4x 1/_)(x)(50y0 +0,yt - im )ugge ¥ = 22—1/2 j dtx ll_J(x)(é — im)ugge™

= —iz;"/? f d*x P()(i8 + m)ug e 9.

The sudden appearance of the mass m inside the brackets comes from the fact that! (¢ — m)uy, =

(yoqo +yig; — m)uaq = 0. Furthermore, we got from —d; to 5L- by means of integration by parts. By
Hermitian conjugation we find, using y#t = y%y#y?°,

Upaq — Qg = 125/ f d*x (P00 (i + m)uaq)fe"q‘x

= iz;"? f d*x el *ul (—iy°8y° + my®y )y y(x)

—iZZ_l/2 f d*x ey, (i8 — m)P(x).

We now could also define Integral I, | ., and derive their formulas and commutation behaviors just
in the same way as in the scalar field case in (>7.5.2). Unfortunately, to find a neat notation for the
L,,,..p,’s would be a little bit more challenging, because now the differential operators (15 + m) and

(i8¢ —m) have to be place on the right- and left-hand side of the fields respectively. Nevertheless, it
should be clear what happens and it should be clear that just in the same way as for the scalar field in
(>7.5.3) we can commute the creation operators in a vacuum matrix element to the left and the
annihilation operators to the right, produce a lot of disconnected parts, throw them away and stay
with the single interacting matrix element. For example, for a 2 — 2 process we end up with

_ t T
Sﬁa - (‘Q|a+va1%a+vaz‘ha—,a3Q3a—va4Q4|'Q')
=d.p. + (—i)%i%Z;? f dx,d*x,d*xsdtxg el e X2 4y o T, o (18, — m)(i8y, —m)
QTP )P )P (x2) P () | Q) (18, + M) (i8y, + M) Ugyq,Ua,q, €53 Be™ X0,

Note, that for the creation operators the replacement equation read ai’aq - a:aq = —iz771/2 [ In

the matrix element Sp, the creation operators as “in” operators (with a minus index). Thus, their

contribution to the prefactor is +iZ~1/2,

7.5.5 LSZ Reduction for Anti-Fermions
For antifermions we found

b;p = e—iwptgapy0¢+(5)' ¢+(ﬁ) — _fd3x e”ﬁ’?l[)(a_c’).

And now perform again the completely analogous calculation as for Fermions in (>7.5.4):

1 Do not get confused with the minus signs in the contraction. Itis y#p, = Y°po + vip; = v°p° — ¥P.

45



biaq J.d3xe ”‘qvaqy Y, (x) - fdgxe ”‘qvaqy Y (x)

= Zz_l/2 (lim — lim ) f d3x e ",y P(x) = Z;l/zj dt d, J d3x e ",y P(x)

.‘.
b+aq

t—o0 t—>—00
d*x 9, e'ix'qiaqyolp(x) = 22—1/2 f d*x anyo (zp(x)aoe-i”q + e—iX'an¢(x))
d*x e_ix'ql_Jaq ((50)/0 + aoyo)l[}(x)

d*x e_ix'ql_Jaq (iql.yi +im+ aOyO)w(x)

J
J
=7, f d*x e, (—igyy® + dpy° ) (x)
J
J
|

—iZ 1/zfd‘}xe w1y, (i@ —m)y(x).

In the step where the mass appears, we used ¥, (p + m) = ﬁap(yopo +yip; + m) = 0. Again, the

bt .aq appears in matrix elements, not the b+ .aq- Thus, the correct prefactor in the LZS reduction

1/2

formula is +iZ~'/2. By Hermitian conjugation we find, using y#T = yy#y?,

. T
biag—b_aq = iZz_l/2 J d*x e'd* (ﬁaq (i8 — m)l[}(x))
— iZz_l/z f d4x ¢T(x)(—iy°§y° _ myoyo)yovaqeiq"‘
= —iZz_l/2 f d*x llj(x)(i5+ m)vge'd™.

7.5.6  LSZ Reduction for Photons
For photons we found

a}{p =gy, - f d3x e~ P*5,A(x), Qp = —i&y - f d3x eP*G,A(x), gguf =g0,f — fo,9.
We are going to use that for the photon momentum we have ¢¢ = §:
aI’Aq - af_lq =igg" f d3x e—ix-qg)oAJ,(x) — g, f d3x e‘ix'qgoA_(x)
_ o=1/2 (. . . —ixqS
=73 (Jim = Jim ) ez - [ @*x e300
= i23—1/z€/1q f dt aofd3x e‘ix'qgoA(x)
= iZ3_1/2£,1q : f d*x 9, (e‘ix'q(')oA(x) - A(x)(’)oe_ix'q)
lZ_1/2 f d*x (e7*992A(x) — A(x)02e~*7)
=iz, 12 €1q fd‘*x e~ (92 — 02)A(x) = iZ;l/zslq . f d*x e*4(92 + q2)A(x)
=iZ, " €, x e X -V X)=1iZ, " “&4 - xe ™ - X
12, e, - | dx e (98 = V2)A(x) = iZ7 %, - | dx e (33 — VA

lZ_l/2 fd“x e ™A0A(x),
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where we used integration by parts twice to get from V2 to V2. By Hermitian conjugation we find
Ayrqg —A-aq = —iZ_1/2£,1q : f d*x e *OA(x).

7.5.7  Alternative Form of the LSZ Reduction Formula

We start with our “old” LSZ reduction formula, where we write the S-matrix element in terms of the
ladder operators of the “in” and “out” fields, then insert our effective formulas for them given in the
Overview in section 7.5 and finally apply time ordering:

= ({ql}+|{pl} )= <-Q|a+ q: """ —pl |-Q'>
fl—[—d“x elXi(O; + m?) H—d‘*y e‘ipf'yf(I:lj + mz)
<Q|T¢(x1) ' ¢(xn)¢(Y1) ¢(Ym)|ﬂ)

We can now express the time ordered vacuum matrix element in terms of its Fourier transformed
form, which we will, for now, call I':

F(qy, - G Py s Pm)
= l_[d‘*x el%xﬂ]_[d‘*xbe%ybmmp(xl) BCDPOD - $OI).

The inverse relation reads (with k’s instead of ¢’s and k"’s instead of p’s)

QTP (x1) . ()P (y1) - g(ym)l-(l)

- f 1_[ d*k, e~tkaa nd‘*i?;, e kb Yo Tley, oo ko KL o KD ).
a=1 b=1
If we plug in this inverse relation (and turn the integration variables k; — —k}), we find

= <{ql}+|{pl} ) =(Qlayq, _,,1 1)

fﬂ—d‘*x el4*i(0; + m?) l_[—d‘*y e~'5Yi(0; + m?)

Jl_[d‘*k e ”‘a"al—[d‘*k’ Kb Yo Ty, o Koy =K o=k )

fﬂ—d“x eli*i(0; + m?) d*k; e~ n—d4y e‘ipi'yi(lilj + mz)d“EJf etkj Vi
(kg o Ky =K oy =)
m .
— . l — . !
f ﬂ—d‘* d*k; el @k (— 2 + m?) ﬂﬁd‘*yj d*R; e—l(pf—"f)'yf'(—ka +m?)
j=1
Tk, o =k o=k
n i m
l — L _
- f 1_[\/—76141@ (2m)*8(q; — k) (—k? +m?) nﬁd“kj (2n)*8(p; — k,;)(—k;z +m?)
i=1 j=1

T(kyy oo, Ky =k oy =K1

n

m
1 1
=| |— (q?—m2)| |— (p7 —m?) -T(q1, ) Gy —P1s e r —Pr)-
) ivZ i1 ivZ

All integrals have now disappeared and we can put all the factors within the product signs on the other
side of the equation. If we also express I again by the S-matrix element Sg, = ({q;},|{p;}-), we will
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get the desired equation given in section 7.5. Note that we changed the integration variable p; - —p;
again (on the right-hand side).

7.7 Time-Evolution and Interaction Picture

7.7.1  Schrédinger Picture
In the Schrodinger picture, states evolve in time like

;A ®)s

— = Hslw(©)s,

while the operators Og, like Hg, are independent of time. Schrodinger states evolve in time like

[Y(0))s = e s |y(tp))s,

which is consistent with the Schrédinger equation:

dly(t d . )
i% = iﬁe_lHS(t_t")W(to))s = Hge st [y (to))s = Hslp())s.
Thus, the time-evolution operator reads U(t, t,) = e ~#Hs{t=to),

7.7.2 Heisenberg Picture
In the Heisenberg picture, the states are fixed and operators are time-dependent. We can construct a
constant state [y) from [(t))s by

[¥)u = [p(0))s = U0, IP(t))s = e™ (D)5
If we define the operator in the Heisenberg picture as
0y (t) = U~1(t, 0)05U(t,0) = eHt0seHE,
the expectation values in the Schrédinger and Heisenberg picture are the same:

HWYl0y(©O)y = 5(1/)(15)|e_theth05e_theth|1,ZJ)S = s(Y()|0s|)s.

7.7.3 Interaction Picture

The interaction picture is a hybrid of the two. We split the Hamiltonian up as H = Hy + Hy,; and we
let Hy govern the time-evolution of the operators and Hy,; of the states. We define the states and
operators in the interaction picture like

[Y(8)); = e™Hot|yh(D))s,

Ol(t) — €iH°t05€_iH0t,
i.e. both are time-dependent. Obviously, we have again
KO0, OR®); = (W(t)|e™Hreotose™Hotettot ) = (P(£)0sI)s.

Note that for a free theory, where Hy,; = 0, we have 0,(t) = Oyx(t). If we plug in |[Y(t))s =
e~ Hot|)(t)), into the Schrédinger equation, we find

d, . _ g | |
i (e7 ™)) = Hoe Mot p (), + e~ Hoti— [(£)), = (Ho + Hinode™ Mot [y(2)),
d D _
= iawj(t)h = eiHot | e=iHot (1)), = Hine (O 1)),

Thus, only Hj,; appears in the interaction picture Schrédinger equation and in this sense Hy,; governs
the time-evolution of the states.
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We saw in the lecture Quantum Mechanics II that the time-evolution operator, which connects states
in the interaction picture like | (t)), = U, (t, ty)|¥(ty)); can be given as

t

Ul(t, to) = T eXp <_l dt’ HInt,I(t’)>-

to

7.8 Pictures in Quantum Fields Theory

7.8.1 From Heisenberg to Interaction Picture
@ are the fields we had all the time and they are to be understood in the Heisenberg picture. From the
formulas of the quantum mechanics pictures, we would expect

iHt —iHt iHg

p =efltpge™™, @ =e ~iHot

iHot ,—iHt ,, ,iHt ,—iHot

tpge = @ = elfotemtHt ettty .

However, in our formula additional times t, appear. That is to the fact that the field in the Schrédinger
picture can be understood as the Heisenberg field at some fixed time t; and the Heisenberg field is the
time-evolved Schrodinger field:

o(t, %) = U™ (t, to) s (to, DU(L, t) = e g (tg, D)oo,
This is a quite trivial generalization of the formula from (>7.7.2). In analogy, we now also have
@ (t, %) = eHolt=to) (£, %) ~Ho(t=t0)
and we arrive at
o (t, J_f) =e iHO(t—tO)e—iH(t—to)(p(t’ f)eiH(t—to)e—iHo(t—to).
We now define U(t, t,) := e'Ho(t=to) g=iH(t=to) gych that we can write
@:1(t,%) = U(t, o) (t, T (¢, to).

782 U=U,

This operator U(t, t,) turns now out to be the same as the time-evolution operator of the interaction
picture U, (t, ty), which can be developed as a Dyson series and written as a time-ordered exponential
like in (>7.7.3). Let’s prove this by taking the derivative:

i(’)iU(t' to) = eHo(t=t0) (H — H,) e=iH(t=t0) = giHo(t~to) . o=iHo(t=to) giHo(t~to) g=iH(t~to)
t _—

= Hlnt,IU(t' to)

=Hlnt =HInt,I =l7(t,to)

This is exactly the formula where one starts to derive the Dyson series: If we go back to (>7.7.3), where
we found

d
ia Y () = Hine (O @), [ (@) = U (e, to) [P (to))r,

we can plug in the latter into the former formula and find

d
Ui (t, to) = Hine (O U, (8, to).

d
iaUI(t:to)W)(to))I:Hlnt,l(t)Ul(t:t0)|1/)(to))1 = ia

Thus, we have indeed

t

ﬁ(t, to) = Ul(t, to) = eiHo(t_to)e_iH(t_to) = TeXp <—l dt’ HIl’lt,I(t’)>'

to
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7.8.3  Picture of the S-Operators
Since U; evolve interaction picture states in time, the S-operator, when given as § = U}, should also be
understood in the interaction picture, but since we know from (>7.7.3) and (>7.7.2) that

(BelSlas) = (BelSilas)

where (,Bi |S|ai) is in the Heisenberg picture, we do not need to put so much emphasis on the picture
in which S is to be understood.

7.9 N-Point Functions

7.9.1 N-Point Function in Terms of “free” Fields
We saw that, for any fixed time t,,

9:1(t,0) = Ui(t,to) ¢(t,X) Ur* (¢, to).
If we abbreviate ¢, = @(x;), ¢;1 = @;(x,) and U, = U,;(t,ty), we can write

G(xy, o Xn) = (QUT Q102+ @) = QT UT @ Uy Uz ppU; -+ U 01 UnlQ).
Now we find quite intuitively, using U;1(t, to) = U;(to, t),

U U = Up(ty, t) U (. to) = Up(ty, t)Us(to, ) = Up(tity) =2 U

The step U, (t;, tO)U,(tO, tj) = U,(tl-, tj) is obvious from the exponential representation of U;. We now
can write

G(xX1, ey Xp) = <Q|T UTt @ Uiy @12 Upz - Upeyn Prn un|ﬂ)
= <Q|T U Ue UTY @1 Uiz @12 Upz = Upo1n @ Uy 'ujo{u—oo|Q)
= (Qluo_ol T U1 o1 Uiz @12 Uys - Up_qpn Pn Un—o u—oo|~Q>:
where obviously U, = U;(o0,ty) and U = U;(o0, t;). Obviously, UZ! carries no time dependence,

which is why we were able to pull it to the left-hand side of 7. Since we have our time-ordering
operator there, we can commute the U’s with the fields and write

G(xl:---»xn)=(ﬂ|'u§ol T @n@nOm Uo1UpUzz Uy nUp - u—oo|ﬂ)-

Using the integral definition for U, itis easy to see that U;;U;; = Uy, for t; > t; > t;. We can therefore
write

G(x1:---'xn)=<ﬂ|u§ol T on®r@m Us-w ’U_OO|Q)
=(Q|UZ' T 9@ @m exp(—i[  dt' Hype (t) U_o|Q).

Now we need to deal with the U-operators acting on the vacuum states |Q). We will use H|Q) = 0 and
thus e'#t|Q) = |Q). Finally, we will insert a full spectrum of H,-eigenstates:

Ui oo|Q) = Uy (Fo0,£)|Q) = lim eHo(t=to) g —iH(t=to) | ()) = lim etHo(t=to) | ())

= lim ) et to>|n)(n|n) Jlim Z B (6 to>|n)(n|n)

t—>+too

|0)(0|Q)+ Jlim Z iEn (- to>|n)(n|n>

n+0

Actually, we have continuous states, i.e. the sum is an integral. The Riemann-Lebesgue lemma tells us
that

50



b

lim f dx f(x)e*i¥* = 0.

o0 a
We could also see this when instead of t - —oo taking the limit t - t+oo(1 % i€) for an arbitrarily
small, but fixed €. Anyway, we are left with

Ul =10)01Q) & Q) = UTLI0)(0]Q)
Recall at this point that U1 = UT. Now, we can write

G(xqy, e, Xp) = <Q|0>(O|T PPz Pin EXP(_ifjooo dt’ HInt,I(t,)) |0)(0|Q)-
We are now left with finding (©2]0). We use the normalization! (Q|Q) = 1

1 =(Q]Q) = (Q0X0]UxUZ5[0)0]Q2) = (Q[0X0]2)X0]U; (o0, tg)Ur * (—0, t5)|0)
= (Q|0X012)0]U; (o, to)Uz(Io,—OO)IO) = (Q2]0)0]Q2)(0]U;(c0, —0)|0)

= (Qloxole) =

(0|7 exp(i [ d*x Ling,)|0)

where we used
S = U;(c0,—) = T exp (lf d*x LInt,I)-

7.9.2 Interaction Picture Fields are Free Heisenberg Picture Fields

We saw that the connection between Schrodinger, Heisenberg and Interaction operators reads
OH(t) — ethOSe—th’ Ol(t) — eiHOTOSe_iHot.

In case of field operators, we saw in (>7.8.1) that this is easily generalized:
Py (t, f) =e iH (t=to) Ps (tO' D-C))e_iH(t_to)' (4 (t' D-C)) = eiHo (t_tO)gDS(tO' f)e_iHo(t_to)-

Let’s pick t, to be a time far from the scattering, such that @s(t,, X) is a free Schrodinger field. To get
the free Heisenberg field, we have to use the free Hamiltonian H instead of the total H in the exponent
- and from there it is obvious that ¢ free = @;.

7.10 Wick’s Theorem

7.10.1 Proof of Wick’s Theorem

Any free Heisenberg field (or equivalently, interaction picture field of an interacting theory) ¢ can be
split up into @*, where ¢* contains the a'-term of the expansion and ¢~ the a-term. For example, for
fermions this is

P = fdﬁ (b;pv;,’eip'x + aapuge_ip'x)
= YP*r= fdﬁ blvFe®*, P~ = fdﬁ agpugePx,

This decomposition is useful, because (0|¢* = 0 and ¢~|0) = 0.

N-POINT FUNCTION FOR ODD N:

1] assume that if we take the normalization (Q|Q) = 1, (0|0) = 1 is not true anymore. Otherwise we get
some contradictions, here. However, all textbooks assume (0|0) = 1 later again, for example in Wick’s
theorem. Apparently, you can switch normalizations as needed ...
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Consider a 3-point function, using ¢; := @ (x;). Withoutloss of generality we assume t; > t, > t3, such
that we do not need to re-order the fields when dropping the 7 (otherwise we re-order it
correspondingly and the proof goes through in the same way):

(01T @1 020310) = (011059310} = (0l1 902 (p3 + 93)10) = (0lg1 90,97 |0).
Here, we used already ¢ ~|0) = 0. Now we use the symbol
[A,B]; ==AB+BA < AB=[AB]; ¥ BA.

for the commutator and anticommutator respectively.! We will now push through ¢3 to the left and
thereby catch commutators (for boson fields) or anticommutators (for fermion fields). The
commutators/anticommutators for boson/fermion fields are always complex numbers (no operators
at least, not few of them are zero) and thereby can be pulled out of the expectation value:

(017 @10,0310) = (0|01 ([902, 931+ F 93 92)|0) = (0191 10)[ 02, 9311 F (Olgp1 03 9,10)
= (011 10)[@2, 931+ F (0|([01, @3]+ F 03 07),|0)
= (09110} [@2, @31+ F (019,10} [@1, T 11 + (0lT @19,|0) = 0.
=0 =0 =0

The crucial point is that the vacuum expectation value of a single field is always zero, since

(0|0} = (0l(p* + ¢7)[0) = 0.
=0 =0

It is quite obvious now that all n-point functions for odd n vanish: When we push through the ¢;' field
from the right-hand side, each step produces an additional commutator-/anticommutator-term. Since
the commutator/anticommutator is pulled out of the expectation value, the number of fields within
the expectation value is reduced by two. If it was odd in the beginning, the number is also odd after
reduction by two. We now have the vacuum expectation value of n — 2 fields, which we can treat in
the same way as the one for n fields: We can reduce it further until we reach the expectation value of
a single field and this vanishes. What is left is the one term without commutators/anticommutators
and with all n fields. But here the ¢, field is now placed on the very left, where it vanishes when acting
on {0].

N-POINT FUNCTION FOR EVEN N:

Let’s consider a 4-point function and treat it in the same way as the 3-point function before. Again, we
assume without loss of generality t; > t, > t; > t, and find

(01T 0102030410) = (0]0190,¢3¢410) = (0@, 003904 10).

Now we push through the ¢ to the left. We have to push it past three fields, thus we get three terms
with commutators/anticommutators:

(01T 919020030410) B
= (0119210} @3, 95 1+ F (0le10310)[@2, 93 1+ + (0l@,0310) 1, 5 1+
T (0los 910290310).

The last term vanishes due to (0|@; = 0. We now use the following trick: We were able to pull out the
commutators/anticommutators out of the vacuum expectation values. Of course, we can also push
them back in and use once again (0|@; = 0:

[03, 051+ = (0][@3, 9 1+]|0) = (Olosps + @F 9310y = (0lpzp7F10) = (0lp3¢,0).

Thus, we are left with

1 The confusingly redundant notation [4, B]_ := [A4, B] and [4, B], = {4, B} is only used in this section to
handle bosons and fermions at the same time.
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(01T @1020304|0) = (0191 0210){0[p3¢04|0) + (0];93]0){0|@,04|0) + (0|1 04|0){0]p,p3|0).

Note that the upper sign holds for fermion fields and the lower sign for boson fields. We observe that
any odd permutation of the field order gives a minus sign for fermions (+1234, —1324, +1423).1

We did this all with the assumptions t; > t, > t; > t,. If we get rid of that restriction, we obviously
get all possible combinations time-ordered 2-point functions:

(01T 1029039410)
= (0|7 19210)0|T @3¢04|0) £ (0|T 91 03|0){0]T@,¢410) £ (0]|T ¢104|0){0|T @, ¢3|0).

However, which of the terms carries the minus sign (in case on fermions), does depend on the order
of the times t;. For example, for t, > t; > t; > t, we have (0|T@10,0304]0) = (0]|@,01P394]0), so
we start with the order 2134. 1324 is now an even permutation and gets a plus sign, whereas 1423 is
the odd permutation and ends up with a minus sign.

We know that 2-point function are just Feynman propagators. Using D;; := Dg (xl- - xj) we can write
(01T 01020039410) = £D13D34 £ D13Dyy & D14 Dy

7.10.2 Different Types of Fields

So far, we always took the commutator/anticommutator to be non-zero. What happens for different
types of particles, for example photons and fermions, for which we know the commutator vanishes?
Take a look at our formula from 7.10.1

(O|T @19203040) 3
= (0]p19210)[@3, 9 1+ F (0le193|0)[ @2, 9F 1+ + (0lp,0310) @1, 0 1+

T (0los @1029310).
=0

Let’s assume the fields 1 and 3 as well as 2 and 4 are the same. Then we get
(01T @1 B2033410) = F(0lp10310)[ P2, B3]+ = F(OIT@1030X0IT G2 3410).
Thus, we can always split up the n-point functions in n’-point functions containing only fields of one
type each. For example, we find for photon fields A and fermion fields ¥
(01T A1 A3, AsAg|0) = (0|T A1 A, AsAg|0)0]T P33P, |0) = (D12D56 + D15Dy6 + 525516)534—
= D12D56D34 + D15D26D34 + D35D16D34.

1 Note that this is consistent with the fact that (0]@,¢,[0){0|@3¢94|0) = (0]|@3¢,|0){0|@,¢,|0) since it takes
an even number of permutations to get from 1234 to 3412.
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8 FEYNMAN DIAGRAMS AND RULES

8.1 ¢*Theory

8.1.1 Feynman Rules in Momentum Space
Let’s consider the connected diagram only, for which we arrived, in first order, at the expression

S=i? J d*x; d*x, e"P2%2eP1r%1 (O, + m?)(O; + m?)
( 12iA
41Gp

If we plug in the integral formulas for the propagators, we find

f d*z Dgp(x, — z2)Dp(x; — z)Dp(z — z)).

3
S=- 12074 d*x, d*x, d*z d*q, d*q, d*q; e""P2*2ePr*1 (O, + m?)(0; + m?)
4G
'Gp
;e—ifh'(xz—z) : e—i(Iz'(x1—Z) : e_iqB'(Z_Z)
q? —m? + ie q? —m? + ie g% —m? + ie
12i32 . .
= — 4|g .[ d4x1 d4x2 d4Z d4(71 d4q2 d4q3 e_lpz'xzelpl.xl
'Gp
(2 2 o 2 2 .
™) i R ™) g, ) L e-ias(-2)
q? —m2+ie q: —m? + ie g2 —m? + ie
12i32
= - 4'g f d4x1 d4x2 d4Z d4671 d4672 d4673 e_pzhxzepl.xl
'Gp
. . je~ids(z-2)
L‘e—l‘h'(xz—z)ie—lQZ‘(X1—Z)—
q3 - 7?2 ;i ie
12i32 . o leTlas(zmz
= —(2n)® fd‘*z d*q, d*, d*qs 5(py — 42)0(—p, — qu) iei i Zielt? —
(2m) 21G, 31 d*q, d*q3 6(p1 — q2)6(=p2 — q1) Z—mitic
12800, e i, €730
=- d*z d*q, ie P ZiePr
416G, f s q? —m? + ie
6
[ 12i Af d*z d4(73 e—i(pz—p1+Q3—Q3)'Z;
4G, g2 —m? +ie

B 12i2 . (2m)*8(p, — p1 + g5 — q3)
416G, s g2 —m? +ie '

The factor G, aside, this is exactly what we got by our Feynman rules. One may also note that this g5-
integral is divergent. This is typical for diagrams with closed loops. It will later take us a great deal of
effort to deal with these divergences.

8.1.2 Disconnected Parts of Diagrams

In general, one Feynman diagram as we defined it so far, can have one or more disconnected parts,
which are closed in the sense that they do not have any incoming or outgoing particles. We already
met one of those: In the diagram

X &—9Xx;

the part of the z vertex is disconnected from the part with incoming/outgoing particles. Let {V;} be the
set of all possible disconnected parts of ¢*-theory. Suppose a given diagram has n; pieces of the form
V; for each i in addition to the connected piece. We see at the formula for G5 in terms of the
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propagators Dy that disconnected parts of a diagram will factor out (recall that G} contains not only
one but several diagrams).! The value of a given diagram W, can then be given as

1 n;i(d)
Wa =vdnni(d)![/i '
14

where V; is the value of its connected part. Of course, the number n; of a disconnected part V; depends
on the diagram d. The factor 1/n;! is a symmetry factor coming from the interchanging of the n; copies
of V;. The matrix element contains now the sum of all diagrams:

1
S~ZW =2v | | i@,
d 4] Iniay™
d d i

Of course, there are many diagrams, which have the same connected part V; and differ only in the
disconnected parts. For such a group of diagrams with the same connected part V; we can factor out
this connected part. What then remains “in the brackets” is the sum of all possible combinations of all
possible disconnected parts, i.e. the sum

2 T

fni} i

where {n;} = {n,,n,,ns, - }. That is, we sum over {0, 0,0, ... } and {1, 0, 0, ... } and also {256, 12, 34, ... }
and so on. But this sum is the same for any group with the same connected part V,;. Thus, we can in
turn factor out this sum over {n;} and what remains now “in the brackets” is the sum over all different
connected parts V,; , which we will call ), connected:

1 1w
5~ZnﬁVi L. 2 Vd=ZHEVi ‘-Econnected.
i g i "

{n;} i diagramms d
with different V4

It is now possible to write the sum over {n;} as an exponential:
2 [ =222 L =T e = [owow =D
ny n,; ns i i

What we now see is that the sum of all diagrams is equal to the sum of all connected parts times the
exponential of the sum of all disconnected parts. If we now take a look at

o)

and expand it in the same way as Gy, we will just get diagrams containing disconnected parts only.
That s, we will get

1o
o=y [ =y v
g i Y i

which cancels the disconnected parts of Gy.

gD = <O |T exp (l f d4Z Llnt,l)

1To get this straight: The matrix element of a physical (scattering) process can be described as a series of
(infinitely) many Feynman diagrams and each diagram may have one or more disconnected parts. The parts
of a given diagram factor out of this diagram but certainly not of the series of all diagrams.
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8.2 The Feynman Rules of QED

8.2.1 Energy Momentum Conservation at each Vertex

Instead of labeling all internal momenta independently with g;, including the four-momentum
conservation §-function for each vertex and integration over d*g;, one can already label internal
momenta by expressions of external momenta, such that the four-momentum is conserved at each
vertex, for example

p1+ ke
k}‘ — /]:2 instead of kl\ — /]:2
2 AN ZG ZR O

Then one can save time because one does not have to do the integrals over internal momenta.

8.2.2  S-Matrix, T-Matrix, Amplitude

The structure of the S-matrix is § = 1 + iT, where 1 is the identity operator: Even in an interacting
theory, particles may simply miss each other and don’t interact. In practice, we do never draw such
Feynman diagrams, where particles don’t interact, because we don’t care about them. Thus, when
drawing (interacting) Feynman diagrams, we only consider the iT part of S, where particles do
interact. Moreover, when using Feynman rules, we will - after the integration over internal momenta
- always end up with a §-function of total momentum conservation.

Let’s consider an arbitrary S-matrix element with incoming momenta {p;} := {p,, p,, ... } and outgoing
momenta {pf} = {p, 03, -}

({pIsl®d) = (o) + {oiT o) = ({p}iTl) = Co*6(pi — pf) - M ({pr} (0:3)-

We dropped ({pf}|{pi}) due to lack of interest. Inside the §-function, by p; and p; we obviously mean
Di = XnPn and py := Y, pp. The usual procedure is now that the result of the Feynman rules is “’per
definition” iM. Since the Feynman rules also produce a & -functon S(pi —pf), we add another
Feynman rule, according to which, we have to drop the total momentum conservation §-function

(together with a factor of (2m)*) in the end. Those Feynman rules then will give us iM.

M is called “amplitude”, but often also simply “matrix element”.

8.3 Compton Scattering

8.3.1 S-Matrix Element using Feynman Rules
Let’'s consider Compton scattering, where a photon with momentum k; and an electron with
momentum p; scatter and leave with a momentum k, and p, respectively:

y(k) + e (p1) = v(k2) + e (p2).

Up to second order (two vertices), there are two Feynman diagrams for this process:

Using the QED Feynman rules for each of the two diagrams, we get the expression
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i
ZyZs f d*q Up, Ex,u igr# gy’ Ek,vUp, 2m)B8(py + ki1 — q)8(q — p2 — k3)

i

g—m+ie
+ 2,73 f d*q Uy, &y, igy* pra—— gy exvitp, 2m)28(q + ky —p2)8(p1 — k2 — @)

= —Z,239*(2m)*6(py + ks — 2 — k3)

i i
u € &, + € & | Uy, .
pz(kz(p1+k1)—m+i6 il kl(pl—kz)—m+ie kz) P1

Applying the last Feynman rule, we drop the factor (27)*8(-+-) to arrive at iM:

i i
iIM =—-Z,7,9% (e & +¢€ £ )u )
2439 Up, \ ®k (pr+4)—m+ie v Fi(p, —ky) —m+ie ) P

Some hints about the Feynman rules:

e (M is ascalar, not a matrix. Thus, the order of the spinors and the y-matrices must always be
conjugated spinor, y-matrices, spinor. For example ﬁpzy”upl.

e Note that also the propagatori/(g¢ — m + i€) = i(p + m)/(q?> — m? + i€) is a matrix and its
position w.r.t y-matrices and spinors is critical. If the corresponding propagator line in the
diagram sits between two vertices, then the propagator i/(g — m + i€) must be placed in
between the y-matrices of those vertices.

o The polarization vector ¢ of the photon must be contracted with the y-matrix of the vertex the
corresponding photon line is attached to.

o The ¢ -function, which ensure 4-momentum conservation at each vertex, can always be
constructed in the following way:

6 (4-momentum conservation) = § (3, incoming momenta — ), outgoing momenta)
In this sense here, “incoming” and “outgoing” does not refer to “into/out of the diagram” as it
is the case for “incoming/outgoing particles/antiparticles/photons” but to “into/out of the
vertex”.

e After performing the integrals over internal momenta, we will always be left with one 6-
function, which ensured 4-momentum conservation of the whole process. Obviously, it must
only contain external momenta.

8.3.2  Rigorous Calculation of Compton Scattering
What we want to do now is to explicitly calculate the corresponding S -matrix element § =
(kq, 011k, py) for the theory of QED, that is to say for an interaction Lagrangian of the form

Llnt = gl/;(z)yal/)(z)Aa(Z)
(g is the elementary charge e, but e is also the Euler’s number, so we will use g here).
LSZ REDUCTION:

Obviously, we have an interacting theory, therefore we need to write our matrix element with the
interacting vacuum |Q) and time-dependent ladder operators, as discussed for the LSZ reduction:

S = ({tky, P2} l{ky,p1}2) = <Q|a+,ﬂzkza+,azpza:Alkla:aml|Q>'

Note that M actually not only depends on the momenta but also on the polarizations 4, , and the spins
a4 . From now on, we will not explicitly note down those dependencies anymore. We now plug in the
LSZ reduction formulas for the ladder operators (we neglect the self-energies due to 7.6):

S =i(=i)° f d*y, d*xy d*y, d*x; efxVzePeXeeTlan g gy

Up, DyZDyl(iéxz—m) (Q|TA“(y2)1/J(x2)A"(yl)l,l_)(xl)|Q) (i§x1+m) Up, e P1x,
=G
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G is now our Green'’s function or n-point function (actually, 4-point function).
TURN THE FIELDS IN THE GREEN’S FUNCTION INTO INTERACTION PICTURE FIELDS:

We saw in the section about n-point function, that we can turn §G into

G= (0|T A”(Vz)lp(xz)Av(}’ﬂll_’(xﬂ exp(ifd4z LInt,I) |0) — Q_N
(O|1T exp(ifd4z Llnt‘,) |0) Gp

The fields in the |Q)-vacuum expectation value where Heisenberg picture fields of the interacting theory.
As we discussed in (>7.9.1), the fields of this formula with |0)-vacuum expectation values are interaction
picture fields of the interacting theory and thereby Heisenberg picture fields of the free theory (>7.9.2).
In the formula above we did not mark this in any way (for example by writing A,,,y, instead of A, ).
From now on, starting at the formula above, all the fields will be understood to be in the interaction
picture, despite we don’t mark them in that way!

PERTURBATION THEORY: EXPANSION OF THE EXPONENTIAL:

Let’s consider the numerator Gy of G. We can expand the exponential like

1
€xp (i J d*z Llnt,I) =1+ iJ d*z Lines — Ef d4Z1 d4d22 Llnt,l(zl) LInt,I(ZZ) + e

In zeroth order we have no interaction. If we demand that p; # p,, k; # k,, we physically know that
the zeroth order will not contribute, because without interaction the momenta cannot change. The
first order will also not contribute because Wick’s theorem told us that a vacuum expectation value of
an odd number of fields vanishes. Ly, contains three fields, together with the four fields outside the
exponential we have seven, which is odd.! We therefore will only consider the second order.

Since we have neglected the term without any interaction, what we are going to calculate is (>8.2.2)

S = ({k2, p2}+1tk1, p1}-) = (ko P2 34 ISIEk1, 1 }2)
= ({k2, 02} k1, p132) + ({2, 02} |iT [k, 1} -) = (ko P23 liT {ky, p132)

neglected

= (2m)o(py + ky —pz — k) - IM.

PHOTON FIELDS:

In second order perturbation theory and after plugging in the interacting Lagrangian, our numerator
Gy takes on the form

1 _
Gy = _Ef d*z, d*z, <0|T AR () (x2) AY (v (xq) Ling(z1) LInt,I(ZZ)|O>
2
= —%f d*z, d*z,
<O|T AF ()Y () AY )Y (1) Y (20)vsP(21)A% (21) ll_f(zz)Yxl/J(Zz)AK(Zz)m)-
The photon fields commute with the fermion fields and we can separate them, as we saw in (>7.10.2):
2
Gy = —%f d*z, d*z,
(01T A% (y2)A” (¥ A% (21)A* (22)10) (0T Y ()P (x) P (20)¥o Y (20) (2D, (22)|0).

Consider first the photon fields only. Wick’s Theorem gives us now, using 5;‘;;}_ = Df" (x; — ;)

1 Technically, what is more important is the number of fields of the same type. However, if the total number
of fields is odd, also the number of at least one field type is odd and therefore vanishes. Since 2-point
functions are multiplied according to Wick’s theorem, we get no contribution at all.
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(0lT A (y2)A¥ (y1)A% (21)A*(z,)|0) = DV, D2% + D7, Dy, + DY, DYe,

Y2Y1 Y2217 Y122 V2227 YV121"

We will now see that the first term vanishes.! We consider now only the first term, plug it back into
Gy, plug Gy backinto G and finally plug G back into M; (since it is the first term only, we use the index
1). Now we consider the y;-integrals only, pull everything which is y;-independent in front of it and
treat is as a proportionality factor:

S~ fd4}72 d*y; eikz'yze_ikfhl]” Dylb\#v(yz -y

—in*v .
n e~ la(yz—y1)
)

_ ik, —ika- —
_fd4y2 dty, eterzemtami, O, _fd4qq2+ie

where we plugged in the integral form of the Feynman propagator. When we now apply the quablas,
we get down a factor of (—iq)?(iq)? = q* from the exponential. Using that ¢*/(q? + i€) - g in the
limes € — 0, we are left with (neglecting also all constant factors of 5;“’):

S, ~ _[d4y2 dty, d*g q? el2V2e=laVig=ia 02=y1) = _fd4y2 d*y, d*q q? el(ke=DV2p=ili—0)7
= @2n)® [ 474 80k, = 8 = 0) = @m)*K3 8(Us —k) = 0
fork, + k.
In the same way we will now consider S, 3 := S, + S, i.e. the terms Dy, Dy, + D, D}?, :2
Saz ~ fd“yz d*y, ezYzemtkavi g g, O, O,
(52”(3/2 — 2)D¥*(y1 — 2,) + D" (v, — 2,)Dp° (y1 — 21))-

Note that Gy and therefore also §; 3 contains also integrals over z; and z,, which are not written out
here but absorbed into the proportionality sign. Still, this fact allows us to relabel the integration
variables z; & z, and the summation indices k < ¢ for the first term in the brackets. Obviously, the
two terms in the brackets are now equal and we get a factor of 2:3

Sy3 ~ 2 f d*y, d*y, etk Yz o—ik1y1 Ek,u€kyv Dysz1 E#K(YZ - Zz)E%U(Y1 - 7).
We can now plug in the integral formulas of the Feynman propagators and apply the quablas:
Saz ~ Zfd‘*yz dty, etkzViemtkavi g g, O, 0O,

_ —iptt _ —in
d* e-lﬁh'(YZ—Zz)fd‘l'
f qqu+i6 q2q§+i6

vo
e—iCIz'(y1—Z1)

1 The z;-coordinates come from the interaction integral, they can be interpreted at the space-time points at

which the interaction take places. All possible interaction space-time points are then integrated over: this

is just the superposition principle of quantum mechanics. Anyway, the propagator ’D‘g;;z can be interpreted

as a photon line from interaction point z; to interaction point z, - an internal photon! But for Compton

scattering, we do not have any internal photons, because this term vanishes.

2 Technically, the proportionality sign is not correct at this point, because we have z;-dependent terms here,

but absorbed a z;-integral into the proportionality sign.

3 One might worry at this point about the z;-dependence of the fermion fields. Without interchanging z; <

7, and g © k (i.e. for the second term in the brackets), we had
(O|T1/’(x2)1/_’(x1)1/_’(21)}’a¢(21)1/_)(22)Vx1/)(22)|0>:

but with interchanging (i.e. for the first term in the brackets) this becomes
(0|T¢(x2)l/_’(x1)l/_’(zz)yx¢(Zz)ll_)(zl)yalp(zl)|0>-

However, as they are time-ordered, those two expressions are the same. That is, we can place this term in

front of the brackets and the manipulation we did are valid.
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2 f d*y, d*y, etzzemtani g gy
(—i)z(_inIAK) fd4q1 e~ (y2—22) (_i)Z(_invo)fdzl-qz e—itz(01-71).
= —2nknv? f d*y, d*y, e'fzYzetkan Eiuékyy 0V — 22)6(y1 — 1)
— _Zeikz'zze—ik1'z1 5}’:25}?1-
That’s all about the photons. With this result, our matrix element reads
S = gzi(—i)3fd4x2 d*xy d*z, d*z, ek ZzelPz¥2etkizy g gf

ﬁpz(iaxz _ m) (0|T¢(x2)¢(x1)¢(21)2011}(21)1#(22)%1/)(22)|0) ( QXI " m)up omip1Ts
D

FERMION FIELDS:

We now apply Wick’s Theorem to the fermion fields. Recall (in a very hand-waving notation) that the
fields contain ladder operators in the way ¥ ~ (b* + a) and ¢ ~ (a* + b). We also found that only
{a,a’} and {b, b*} are non-vanishing. Therefore, 2-point functions of Y and ¥y will always vanish.
In the notation of the proof of Wick’s theorem, this is very easy to see for the i case,

(0lyp|0) = (Olyyp*|0) = (Olyp*4|0) = 0,

and in the same way also for the 1) case. Thus, we can only get 2-point functions of Y (or Y):

(0|T¢(x2)¢(x1)1/’(z1)¢(21)1/)(22)1/)(22)|0)
= szxlDzllezzzz + szxlDzzlezlzz szlezlxlDzzzz + szlezleDzlzz

+ szzzDZ1x1DZZZ1 + szzzDzzx1DZ1Z1’

where, again, Dy, == Dp(x; — x;). The first index comes from the ) field, the second from the i) field.
We neglected the y-matrices here, but we say a few words about them soon.

Moreover, terms including a factor L~)x2x1, i.e. where both variables are x;-variables, vanish as well,
when we apply the Dirac operators in M (this is analogous to the photon field):

Jd4xz d*x; P22 (i, —m)Dp(x, — x,)(idy, +m) e~Pr%s

= | d*x, d* ipyxy i, — Jd4——
f X, A'X1 € (l s m) qél m+ e

fd‘*x d4x eleXz fd‘l-—(q m)l( q+m) —lQ'(xz—x1) e_ipl'xl
2 §—m+ie

e—iQ'(xz—x1) (i@xl + m) e—iP1'x1

—i f d*x, d*x; d*q (g — m) e/Pz=D¥2e=-i(p1-a)x,

—i(2m)8 f d*q (g —m) 8(p, — )6(p; — q) = —iCm)*(p, —m) §(p; —p2) =0

for p; # p,.

We also will not take the terms with D, .z, and 522 2, into account, by a physical argument, similar to
the one we gave for neglecting the zeroth order in the expansion of the exponential. For photons, we
had two non-vanishing terms after applying Wick’s theorem, which turned out to be the same and we
were left with the photon propagators DJ‘,‘ 2 D;,’fz _ only. All the propagators appearing, for example, in
the 52222 -term are

2 Ll vo
Dx221 DZ1X1 Dzzzz DJ’zzz DJ/1Z1
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The indices are interpreted as vertices (space-time points, where interactions take place) and the
propagators connect there. Thus, those four propagators, yield the following Feynman diagram:

X4 ® X
1 JJJJJZl 2 )
2
V1 Y2

This diagram is disconnected! Indeed, the right-hand part contains the propagator 52222, which is

divergent. This process can happen anytime, anywhere. We are not interested in such processes and
we will leave them aside. More rigorously, they are cancelled by the denominator G, as we saw quite
explicitly for the ¢p*-theory. We will not proof this for the Compton scattering case, but rather accept
that the disconnected diagrams cancel Gj,.

All that is left is
— 2i(_\3 4 4 4 4 iky 2y piDyXy p—ikyZy oK o0
§ =g%i(-i) fdxzdxldzldzz et %2etP2X2e %1 gff e
ﬁpz (iaxz - m)(Dx221ygDZ1zzy’CDzzx1 + szzzVKDZZZ1]/UDZ1X1)(iax1 + m)up1 e

Note that the fermionic Feynman propagators are matrices and they do not commute with each other
nor with the y-matrices. That the order has to be that way becomes obvious when writing down
indices:

(0]T 92 (e )PP ()P (2)yE Y (2P (2)v W7 (2,)|0)
~ ~ b ~ ~ ~ ~
= ngyxef(DJ?ZClezfleDgleZZ + DJ?;ZZDZI;QDZ);CZJ
~ ~ ~ b ~ ~ ~
= D&, y&¢Dde v DY, + Dge, v DIS, veDdh, .

Z2X1 2224

Now we apply the derivatives on the propagators,

B L , ip—m) _.
8., —m)D,_, = (i6y, —m dg — omip(emz) — f 4= —ip-(xy—2))
(18, =m)Dus, = (18, )fd P —m+ic’ 4 P —m+ic’
= i6(x, — z;),
D (iéi +m) = Jd‘*ﬁ—e—iv'@i—xl) (ié +m) = f d4ﬁi(_p +m) o—ip(zi—x1)
T p—m+ie x1 p—m+ie

= —i6(z; — x1),
and get
S = gzi(—i)3fd4x2 d*x; d*zy d*z, efz72ePr¥zetkizr gff eff
_ . ~ , . =~ . —ip,x
Up, (—16(x2 - Zl)VaDzlzZVK16(22 - xl) - 16(x2 - ZZ)VKDzzzlyala(Zl - xl)) Up, € P
— —ngd421 d4ZZ eik2~226,—ik1-21
11 D221 p—iD1°Z2 D ip2Z3 p—iP1°Z1 D
Up, (e e t":’<1D2122“‘:k2 te e ekZDzzzlskl)upl
— —ngd421 d4ZZ d4(7 eikz'zze—ik1'z1

. . ie—iQ'(z1—Zz) . . ie—iQ'(Zz—Z1)
7l D221 p~ D122 IP2°Z2 p—P1°Z1 -
upz e e £k1 8k2+€ e ekzq-—m-l—if €k1 D1

g—m+ie
- —g*Gm)* [ d'g
_ i6(p2 — k1 —q)6(k, —p1 +q) i6(q — ki —p1)8(k; +p2 — q)
U, | Frex g—m+ie ko T Fky g—m+ie Eky | Yps

= —g?Q2m)*6(ky + p, — ky — p1)
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_ i i
U, (Ekl (p, — k) —m+ e ke + e, (kg +p) —m+ ie€k1>up1'
As explained earlier in this section, the relation between § and iM reads
§=2m)s(py + ki —py —ky) - iM,

as long as we leave non-interacting diagrams aside (what we always do). If we compare this to the
equation above, we can extract iM to be exactly the same as in (>8.3.1):

i i
iM =—g?u (s & +¢€ £ )u )
g Y, k2o + k) —m+ie T TFi(p, —ky,) —m+ie *2) P
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9 CROSS SECTIONS AND DECAY RATES

9.1 Scattering Probability

9.1.1 Position Space Wave Function yields Probability Interpretation
The position space wave function?!

foo = [ ape i),
which satisfies the Klein-Gordon equation?
@+ = [ dp (p? + me 1 (p) = 0
can be used to define the probability current
@) = iffIF (), 0" =9, — Oy
Consider3
fd3xj“(x) = i.[d3x f*(x)gﬂf(x) = ifd3x dp, dp, f*(py)f () eiP1XGH p=ip2 X
—i [ dp i, f@IF@) (~ipk - ipl) ere e
= fdﬁ1 ap, f*(p)f(2) (Pf + P;) 2n)3s(p, - ﬁz)ei(“’l’l_“’l’z)'t

o1 ¥
=|d z (2pf) = | dp— 2,
[ dpigg tr@or @)= [ apZ-ir@

2‘“101

The zeroth component of the current can now be interpreted as a probability density
p(x) = j%(x), since

[ @xp00 = [ ap /e, r @I =1,

if the wave functions in momentum space f (p) are properly normalized.

9.1.2  Formula for the Transition Probability
For simplicity, let’s see how this works for only two incoming momenta,

li) = fdﬁl ap f1()f2(p2)|p1, p2)-

This will be straight forward to generalize. Note that we leave the “out” state |f) completely arbitrary.
The probability for starting with state |i) and ending up with the state |f) reads

1 This looks like a Fourier transformation, but actually that is not quite the case, since we have the
differential
d3 d*

dp = ﬁ instead of d*p = (27:))4.
But this does not prevent us from defining f (x) in such a way.
2Recall p? = E? — p%2 = m2.
3 Note, that p* = (w,, ) and w, = w; = /p? + m2. Thus, itis justified to turn the 4-vector p} into p}’ with
the 3-vector §-function §(B; — p,).
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wri = [Sa|* = (FISIFISIY

= fdﬁ1 dp, dpy dp; f1() 2027 01 fz (02) (FISIpL, p2Xf1SIp1,p2)"

We saw in (>8.3.1) that any S-matrix element contains a §-function of total 4-momentum conservation.
Let’s make this explicit by writing,

(fISlp1,02) = (27T)45(Pf —P1— Pz)iM({Pf}: P1:P2),

where py is the sum of all outgoing momenta and {pf} is the set of them. iM({pf}, pl,pz) is the
amplitude, that is simply the expression we get from Feynman rules without the factor of
(2n)48(pf —p— pz) (>8.2.2) Using this notation, we find

wpi = [ by dp, dp a5 FGOREIR GO B
(2m)88(py — p1 — p2)8(ps — 1 —p5) M({pr} v 02) M ({pr} P 03)

The expression in the integral is non-zero only for p; = p; + p,, due to the first §-function. Thus, we
can write py = p; + p; in the second §-function and then we can write it as an integral over an
exponential function (its Fourier transform):

wpi = [ by dp, dp a5 FGOREIR GO B
(2m)28(pr — 1 — p2)8 (01 + P2 — P — p3) M({pr} 1 02)M*({pf} 01, 02)
— [ i dp, ap aps d*x F@OREIR DS e Crimris
2m)*6(ps — p1 —p2) M({pe}p1.02) M ({pf} 01 02)
= f dp, dp, dp; dpy d*x f,(p) o@D f S5 (py) e {Pripepimpi)x
2n)*8(ps — b1 — B2) M({ps} 51 2) M ({pr}, P1, P2)

In the last step, we assumed that the momenta do not vary too much over the width of the wave
packages f;(p;). In this case, we can take the momenta in the amplitude M and the remaining &-
function as the constant average momenta p;. Note that the wave packages of the dashed momenta
are the same as for the undashed, such that they have the same average value. We did not do so in the
exponential function, because we assumed that the exponential varies stronger with the momenta
than the amplitude.

Let’s now define “some kind of” a Fourier transform?
fi) = [ dp e o)

As we saw in (>9.1.1), this can be interpreted as a position space wave function. Since those dp-
integrals appear four times in the expression for wy; we derived so far, we get four times a factor of

fi Go):

wy; = f dx || RO @0y — b —p2) M (s} pi52)|”

d4Wfi _ d4Wfi

d*x  dxdt |f1(x)|2|f~2(x)|2 (2n)46(pf — P _ﬁZ) |M({pf}:ﬁ1rﬁz)|2-

For an arbitrary number of incoming momenta, we have obviously

1 See footnote 16 on page 51.
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d*wy; B ) )
T = @l - ) (e G | JIRcol

i

9.2 The Cross Section

9.2.1 Derivation of the Differential Cross Section
We start at the definition

#probability of scattering/time/volume

o= .
incident flux density - #scatterers/volume

Consider a scattering of two incoming particles with momenta p,, p,. Actually, those momenta are the
average momenta over a wave package p;,p, as we introduced them in (>9.1.2). We will just omit
writing the bars here. The probability of a scattering event per time and volume is the expression we
found in (>9.1.2):

i o _ o diwy
#probability of scattering/time/volume = J{dpf}m

= f{dﬁf} (2”)45(pf —Db1— pz) |M({pf}'plip2)|2 |f1(x)|2|fz(x)|2;

wy; was defined as the probability for scattering from a state |i) to a state |f) with momenta {pf}.
However, here we are interested in the probability for the scattering taking place at all, regardless of
the final momenta. Thus, we have to sum up all the possible final momenta by an integration with
{dﬁf} = [1,,dp,, where the product goes over all momenta of external particles of the final state.

Let’s consider the scattering in the rest frame of the second particle, such that it is at rest (p, = 0). In
this case, the incident flux contains only the first particle. As we saw in (>9.1.1), the 4-current density
can be given in terms of the wave function as

160 = @I, F00 = [ dpe ).
Note, that we can give this current as
GO = [if* @] = | [ dp d’ £ (p7) et <aite='
= |[ dp ' £ @@ -ipt - et
= | f dp dp’ f*()f (") (p* +p*)e' @ P
< |[ v i’ @)@ @ + et

= 21pI|f | = 2lpHIIF |

In the same way as we did it in (>9.1.2), p* is the average momentum of the wave package and when
writing p* + p'* - p* + p'* we assumed, again, that the momentum does not vary too much over the
width of the wave package. Since both p* and p'# are related to the wave function of the same particle,
their average is the same: 2p* = p# + p'#. In the last step, we omitted writing the bar, but it’s still the
average momentum of the wave package.

= 2|p*| U dp dp' f*(p)f (p") e @7

Thus, the incident flux from the first particles can be given as
incident flux density = |, (x)| = 2|ﬁ1|2|f1 (x)|2

and the scatterer density (second particle) as

65



; = 2 = 2
#scatterers/volume = |p,(x)| = |j2 ()| = 2Ip3l| (0| = 2ma| (0",

where we used that p9 = m,, since we assumed the second particle to be at rest. Plugging all together,
we find

o= J{dﬁf} (Zn)46(Pf — D1 r P2)~|M({2pf}' p1»liz)|2|];1(x)|2|f2 (x)|2
215, 12| A ()| - 2my | ()]

(@m)*3(py — p1 — P2) 2
BT A el AL ROB O]

So far, we have worked in the rest frame of the second particle. In general, we should use the factor

1 1
instead of

4\/(231 - py)? —mim3 2|py 1% - 2my

This general factor will give the right result in the case of particle two being at rest (p) = Wp,, pd =
mz):
1 B 1 1

1
- = pry = 213 12"
4 (py - p2)? —mim3 4\/w,§1m§ — m2m? 4mZ [P+ m, —m?  Am3Ipl

Thus, we get our final result for the total cross section

(0 1@*8(0r = p1 = )M ({ps) 20 ) A ||
0= f{dpf} - 2 = 2
2|p1|2|f1(x)| ' 2m2|f2(?€)|

_,@m*(p; — 1 —p2) ,
= d Y . |
f{ r) 4/ (py - p2)? — mPm? |M ({ps} p1.p2)]

The differential cross section is obviously given by
5= (27T}45(Pf —p1—
4\/(?1 "p2)? —mi

1 2
- M{ps} 00 p2)|” don,
4\/(p1 p)Z — m2m? | ({pf} P1 P2)| bn

which defines the so-called Lorentz invariant phase space measure (LIPS) to be

do, = {dﬁf} (2ﬂ}45(Pf —P1— Pz)-

22) 5 () o)l )

9.3 The Decay Rate

9.3.1 Derivation of the Decay Rate
We saw that

_ decay probability
~ probability density’

where we know from (>9.1.2) that

d*wy; ~
decay probability = f{dﬁf}ﬁgt = f{dﬁf} (2n)46(pf — pi) |]V[({pf}, pi)|2 |fl~(x)|2,

where p; is the average momentum of the wave package of the decaying particle (the one we denoted
as p; earlier) and f; is the wave function of the decaying particle. py is the sum (and {pf} the set) of all
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the final particles the decaying particle decayed into. We need to integrate over all final state momenta
{dﬁ f}, as we are interested into the total decay probability, regardless of the final momenta. As derived
in (>9.2.1), the probability density is given as

probability density = |p(x)| = [j°(x)| = 2p; |ﬁ(x)|
Thus, we find
[t @y —p) Pe(lprdpdl” 1iCol
- f
2p?]fi )|
2r)*s(ps — i) 2 1 2
=~ [ lap ) e (@) el = = [ douz g ()
l
where in this case the Lorentz invariant phase space measure (LIPS) is defined as

dé, = {dﬁf} (Zﬂ)45(Pf - Pi)-
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10 COMPTON SCATTERING

10.3 Sum over Spins and Polarizations

10.3.1 Sum over Electron Spins
Let’s define I to be everything in iM, which does not depend on the spins «a; (except for the factor i)
such that iM = Uy, iTug, p, - Thus, ' is a 4x4-matrix. We find

2 _ _ — *
z |M|* = z Ua,p, l—‘u¢7f1p1 (uazpz Fu“1p1) :
ay,q ap,a;
Since ul'u is a scalar, we can write * — 1. Using 1 = %% and y°T = y° we get

_ _ T _ _
2 _ — T 71
Z |M| - Z uazpzru“1p1(uazpzrua1p1) - 2 uazpzrualplualplr Ua,p,

aq,0z aq,q2 a1,a,

— = 57 ort,,0
- Z u“zpzrua1p1ua1p1y r YV Ua,p,-

ay,a;

We now use indices to denote the vector- and matrix-products. For them, we use the Einstein
convention. We then can use the completeness of the spinors, Zai(uami)j (aaim)k = (g + m)j:

Z |M|2 = Z (ﬁazpz)ir‘ij(u“1p1)]~(ﬁa1p1)k(yor-l-yo)kl(uazpz)l

ay,02 a1,02
= Z(ufxzpz)l(aazpz)i Fij Z(ua1p1)]’(aa1p1)k (yol"'l'yo)kl
a; aq
=(p2tmy =(p1tm)ji

= (g + m)yli;(py + m)jk(YOFTYO) =Tr (p, + m)T'(p, + m)y°I'Ty°.
Kl

Now, we want to take a closer look at y°I'ty . T contains only sums of products of 4-vectors contracted
with y-matrices.! Using the general property y°y#Ty? = y# yields y°a’y® = & for a real 4-vector a
and thus

)/0(& b e)"'yo = YOGT ves bTG:T]/O = ]/OGT)/O ves yOb’ryﬂyoa’ryo =¢--ba.
Plugging in our I, we find

1 1
€ + & e
G et S Gy iy T i)

2 |M|? = g* Tr (p, + m) (8,12

@q,q2

1 1
(b +m) (S’llkl (py+ k) —m+ie Ehokes F Bk, (py — k) —m+ice g’hkl)'

10.3.2 Sum over Photon Polarizations
We saw in (>6.3.1) that the sum over the (physical) polarizations of polarizations vectors yields

KEKY nikY + ki
Z gfkg/){/k = _n”v - (k R n)Z + k-n :

A=1,2

1 Recall at this point that
1 pt+m

p—m+i6=p2—m2+i6'
as we saw in (>5.5.3).
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We already stated back then, that the last two terms of this result will not contribute; they never do in
QED. We will see now why. In the sum, the polarization vectors carry a y and a v index respectively.
In the last two terms, at least one of them is carried by a momentum 4-vector k. So, the last wo terms
of this formula somehow turn a €# into a k* or a €Y into a k". Therefore, it is worth to take a look at
the amplitude ]V[(e,llk1 - kl), where ¢, _j, is replaced by k;:

1 1
fey + K )
k2 (191 + kl) —m+ie 1 + 1 (pl — kZ) —m+ ieslzkz udlpl

. — . 2_
lM(S,llkl - kl) = —ig“Uq,p, (8/12

Let’s add two zeros of the form p; — m — (p; — m):

1
kz(p1+k1)—m+ie

(p1+k1—m—(p1—m))

1
- (?92 - 1I€1 -m-— (192 - m)) (191 — kz) —m+ iesllzkz)ualpl'

. — . 2_
IM(S/hkl - kl) = —ig“Ug,p, (8/12

If we now use (p; — m)u,, p, = 0and iy, (B, — m) = 0, what is left cancels the denominator, since
we now from momentum conservation that p, — k; = p; — k,. Finally, we arrive at zero:

iM(S/hlﬁ - kl) = _igzﬂ'“zpz (sﬂzkz - 'Slzkz)uaﬂh = 0.

The same will also work for ]\/[(8,12,(2 - kz). Thus, we can use

By v
Z Eréax = —N.

A=12
Thus, we get
4
g
2 -9 u v o K
IMI2 = ) &k, ek, Ehik, Ehs
Ay

1 1
T
rp2 +m) (y” (p1 +%1) et R (pr— k) —m+ iey”>

1 1
(p1+m)(y"(191+k1)—m+iey"+y"(191—kz)—m+ifya)

4
Vo, UK ( 1 1 )
-9 N Tr (p, + m Wt
4 r (e )y”(P1+k1)—m+iev yv(ﬂ k) —m i

1 1
(p1+m)(y"(191+k1)—m+iey"+y"(191—kz)—m+ifya)

4
g 1 1 )
=27
4 r(?z+m)(y”(p1+k1)—m+iey"+yv(191—k2)—m+i6y”
1 1
+ v U4y V)
P m)(y (191+k1)—m+iey 4 (pl—kz)—m+iey

10.4 Bringing the y-Matrices into the Numerator

10.4.1 Bringing the y-Matrices into the Numerator
In (>5.5.3) we derived the identity

1 pt+m

p—m+i6=p2—m2+ie'

In our case, the p is actually a sum (or difference) of an electron and a photon momentum p + k.
Consider

pxk)?-—m?=p2+2p-k+k?—m?=4+2p -k,
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using p? = m? and k? = 0. Thus, we get

4
g p+H# +m pL—Hk,+m
M|2==T + ( —_  y4y,— )
|M[? = Tr (p, + m) Vg ke ie” T Top kgt e
pL+H# +m pL—Hk,+m
+ Vot ——— V)
(pl m)(y 2p1'k1+i€y y _2p1'k2+i6y

We can simplify things further. Note, that

ay’ = auy*y¥ = q,2n*" —y*y#) = —yva + 2a’,
v'e =y'vha, = @n"* —y*y")a, = —ay” + 20",
(—p+m)(p+m) =—p>+m?=0.

If we use those identities, we find

Lk +m)y’(p +m) = (—y"p + 2pf £ hyV + myV)(p, + m)
= (=p1 +m) + 2p; £ hyV)(py + m) = 2py T ky") (B, + m),

B +myY(pr £k +m) = (B + m)(—py” + 2p7 £y k+y'm)
= (py + M)((—py + M)y¥ + 2p} £yVk) = (p, + mM)(2p} £ yVk).

Using those expressions, the sum over our amplitude becomes

g z v 1 Vv
MZ—_| -|—Nl Z 2+

2pf +yVh 27 —vHEe V)

(p1+m) <2p1k1+ley —2p1k2+le‘y

10.5 Get Rid of the y-Matrices

10.5.1 Get Rid of the y-Matrices — First Term
So far, our formula looks like

M 5 T ”.( “ee oo ).”( “ee eee >
| | r 2p1k1+l€+_2p1k2+lf 2p1‘k1+i6+_2p1'k2+i6

If we multiply out those brackets, we get four terms. Let’s consider the first term, which is ~
1/(2p1 * kl + iE)Z:

4

2py, +k 2pY + 7Yk
gTTr(szrm)( Piv 1yv)(191+m)< pi +vy 1)/#)

y‘u2p1'k1+i6 2p1'k1+i6
4
g
= 12 kT 02 Try#(p, + M)y, (2pyy + #:11) (1 + m)2p1 +vVky)
4
g

Try (e, + My,

- 4(2p1 ° kl + if)z -

<2p1v (1 + m)2p7 + 2p1y, (1 + MYV + R, (1 + m)2p] + K11, (1 + m)V”ﬁ)-
=4m?2(p,+m) =:B =:C

Using y#y, = 4 and y#ay, = —2a yields
A =yk(p, + m)y, = —2p, + 4m.

Using (p, —m)(p, + m) = pf —m? =0 & p,(p; + m) = (p; + m)p, = m(p, + m) yields
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B = 2(py + m)piky + 2k (py +m) = 2m((py + m)ky + k;(py +m))
= Zm(zmkl + plkl + klpl) = Zm(zmkl + {pllkl}) = Zm(kal + 2p1 . kl)
= 4m(mk1 + pl N kl)

Using the result of term A as well as k¥ = k# = 0 yields

C=kyy(pr + M)yVky =k, (=2p; + 4m)ky = —2k1p1k = —2(tky, 21} — Prk )y
= —4ky - 1k

If we plug our results for 4, B, C in again, we arrive at the expression

g4-

4‘(2p1 * kl + ié)z
__ 2
~ (2py - ky +i€)?

Tr(—2p, + 4m)(4m?(p, + m) + 4m(mk, + p, - ky) — 4k, - p1%4)

Tr(—p, + 2m)(m2(p; + m) + m(mky + py - k1) — ky - prky).

A general rule for y-matrices is that traces over an odd number of them vanishes. This reduces our
expression, after multiplying out the (—p, + 2m)-bracket, to

2g*

- v _ 2 2 _ . 3 .
(2py - kg + ie)ZTr( P2 (m?py +m*ky — ky - prky) + 2m(m* + mp, - ky)).

Now, we can use
ab=a,ytby’ = ab,({y* v} —v'vy*) =2a-b-ba,
1 1 1
Trab = E(Trab+ Trba) = E(Tr(Za -b—ba)+Tr(2a-b—ab)) = 5(16a- b—2Trab)

=8a-b—Trab
< Trab=4a-b

and we get, taking the limite — 0,1

8g*
—2(—m2p2 -p1 —m?py - ky + (ky - p1) (2 - k1) + 2m(m3 + mp; - k1))-
(2py - k1)
10.5.2 Get Rid of the y-Matrices — Second Term
The second term of the expression in the beginning of (>10.5.1) is the term proportional to
1/((2p1 “ky +ie)(—2pg -k, + ie))-term, which reads

4

g ( 2pyy + km) 2py — vk,
—T - . e v
g T2+ m) Ve op, Ky + e Py +m) “2p, ky +ie!

4

3 g
B 4(2p1 ° kl + 16)(_2p1 * kz + lE)

Tr (2p4 — y#k,)vY (o2 + M)y, 2pyy + ka1 (1 + m).
=:A

We multiply out A and use v,y "y *y?y# = =2y y*y” and y,,y 'y *y* = 4g"* for the last two terms:

A =20yVByy, + 205y Vmy, — yHRaYVBayy, — Ve My,
= 2yVp,p1 + 2myVp, + 2p, 7V, — Amk).

A contains now four terms and each of them is multiplied with (2p,,, + %1¥,,)(®, + m) in the trace.
Let’s examine those four terms together with the factor (2p,,, + k1¥,)(p; + m) individually. Note, that

1 Obviously, taking the limit € = 0 is just the same as putting € = 0, so the question may arise, what is the
effect of the ¢, if the limit is taken that trivially. The answer is that in this example we indeed could have
ignored the € in the first place, but this limit is taken much less trivially when the diagram has loops.
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all traces over a odd number of y-matrices vanish automatically. We also again use the identities we
just used before:

Tr2yVpp1 2p1y + *11) (1 + M) = 2 TryVpop1 Cp1vpr + R1vipr)
= 4Trp o1 P1 + 2 Tr(YV poprkr 1y $1) = 16m?py - p; — 4 Trk p 2Py
=4m?p,-p, =—2k1P1P2
= 16(m?p; - pp — 2(ky - p1)(P1 - P2) + mPky - py),

Tr2myVp,(2psy +%10,) (o1 + m) = 2m? TryVp, (2p1y + #110)
= 4m?p;, TryVp, + 2m2 TryVp Ky, = 16m* + 32m?p, - k4,
=4py =4p,-kq1

Tr 21,y k2 (2p1y +#17,) (1 + M) = Tr 2,7 %, 2p1y 1 + k1 1VuP1)

= 4 Tr pop1 k201 + 2Trp, y kb1 vy 21
=4((py'p2)(ky'1)—M2Dy ko +(D1D2) (P1°k2)) =4kqk;
=16(2(p; - p2)(ky - p1) —m?p, - ky) + 8(ky - k) Trp,py
=4p1'D2

= 16(2(py - p2) (ks - p1) — m?p, - ky) + 32(py - p2) (ky - k),

Tr(—4mk} (2py, + #10) (B1 + m)) = —4m2ky Tr(2pyy + k11,) = —4m?kY (8py, + 4ky,)
= —32m2p1 . kz - 16m2k1 N kz.

Plugging the sum of those four terms back into our “second term”, we find (again, in the limit € - 0)

g4-

4(2py - k) (=2p; - k)
4
_ )
4(2py - k1) (=2p; - k3)
+32m?p; - ky + 32(py - ) (ky - p1) — 16m2py, - ky + 32(py - p2)(ky - ky) — 32mPp; -k,
- 16m2k1 * kz)

(sum of the four trace terms)

(16m2p1 p2 —32(ky - p1)(p1 - p2) + 16m2k1 ‘P2 t+ 16m*

10.5.3 Get Rid of the y-Matrices — Third Term
The third term of the expression in the beginning of (>10.5.1) is the term proportional to
1/((=2py - ky + i€)(2p; - ky + i€))-term, which reads

g 2P1 — k2Vy 2p1 + vV
ZT Tl TRiR e LI a2 WP
4 r(p2+m)<yv—2p1-k2+ie Py +m) 20, ki +ic! )

which is the same as the second term for k; <& —k, interchanged. Thus, we can copy its result and
interchange the k’2 and we get

4

9
4(=2p1 - k2)(2py1 - ky)
—32mPpy - ky — 32(py - p2) (ky - p1) + 16mPp, - ky + 32(py - o) (ky - kp) + 32mPp, - ky

- 16m2k1 * kz)

(16m?p; - py + 32(ky - p1)(p1 - p2) — 16m?k; - p, + 16m*

10.5.4 Get Rid of the y-Matrices — Fourth Term
The fourth term of the expression in the beginning of (>10.5.1) is the term proportional to
1/((—2p1 ko +i€)(—2py -k, + ie))-term, which reads

4 u
g Zp1y — *2¥u 2ry —vHke
—T e — —_—
4 r (pz + m) (yv _Zpl ° k2 + if (191 + m) _Zpl ° k2 + if ’

which is the same as the first term if we replace k; & —k,. Thus, we can copy its result and
interchange the k’2 and we get
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8g*
—(Zp K,)?2 (_mzpz p1+m2py - ky + (ky - 1) (P2 - ky) + 2m(m® —mp; - kz))-
1 Ky

10.6 Mandelstam Variables

10.6.1 Sum of Mandelstam Variables
Consider a process of four particles with arbitrary masses, such that p? = mf,l. and k? = m,zci. Then, the
sum of the three Mandelstam variables reads

stttu=(p+k)?+ 1 —p)?+ (1 — ko) =3pf +2py - (ky — po — ko) + ki + 3 + k3
=3pf — 2p7 + kf +pF + kF = myz + myz +myz +mye.

where we used the momentum conservationlawp; + k; =p, + k, © ky —p, — ky = —p;y.

10.6.2 Dot Products in Terms of Mandelstam Variables
We will now define the so-called Mandelstam variables

s=(py +k1)? = (po + k)3,
t=(p; —p2)? = (kg — k)?,
u=(p; — k2)2 =(p, — k1)2,

with which we can substitute the following dot products:

20, ky=s—pi—-ki=s-m?=S

2p; ky=—u+pi+ki=m?—-u=:-U,

20, ki =—u+pi+ki=m?—u=-U.

2p; pp=—t+pi+pi=2m?—t=2m?—(2m?—u—s)=U+S+2m?
2ky -k, =—t+ki+ki=—-t=s+u—-2m?=S+U,

2p, ki =s—p?—k?=s—m?=:5,
2 _

To express t in terms of u and s we used s + t + u = 2m?, we is the sum of the squared masses of all
particles.

10.6.3 Squared Matrix Element in Terms of Mandelstam Variables
In 10.5 we considered four terms separately. Let's now takes those four terms, again separately, and
substitute the Mandelstam variables (actually, we are going to substitute S and U).

First term:
8g* 2 5 \ i
W(_m D1 Py —M?py kg + (py - k) (py - ky) + 2m* + 2m?p, - ky)
1° K1 m

2 4 2 4
= Siz(—zmz(u + S +2m?) 4+ 2m2U — SU + 8m* + 4m?S) = siz (4m* + 2m2S — SU)

4<4m4 2m? U)

S2 S S

Second term:
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g4-

4(2py - k1)(=2p; - k2)
“ky +32(py - p2)(p1 - kp) — 16mPp; - ky + 32(py - p2) (ky - kp) — 32mPpy - ky — 16mPky
“ka)

2 4
=%(mz(u+5+2m2)—S(U+5+2m2)—m2U+2m4+2m25—(U+5+2m2)U

(16m?p; - pp — 32(py - k1) (p1 - p2) + 16m?p, - ky + 16m* + 32m?p,

2 4
—m2S+ (U +S+2m?)(S+U) +2m2U —m?(S+U)) = %(4m4 + m2U + m?S)
4 2

_244m+m+m2
9\ Ts T

Third Term:

g4-

4(—2p; - k) (2py - k1)
—32m?p; - ky — 32(py - p2) (1 - k1) + 16m2p; - ky + 32(py - p2) (ky - k) + 32m?p; - ky
- 16m2k1 * kz)

(16m?p; - py + 32(py - ko) (py - p2) — 16m?p, - ky + 16m*

2 4
= %(mZ(U+S+ 2m?) —UU + S + 2m?) —m?S + 2m* + 2m?U — (U + S + 2m?)S
2 4
—m?U+ (U+S +2m?) (S + U) + 2m?S — m?S —m?U) = %(llm4 +m2U + m?2S)

gt 4m4_|_m2+m2
9 \su TS T

Fourth term:

4

8g
(2py - k2)?

2 4 2 4
= %(—Zmz(u +5 +2m?) + 2m2S — US + 8m* + 4m?U) = % (4m* +2m?*U — US)

. [4m* 2m? S
= 2g +—-2)

(=m®py - py + M?py - ky + (p1 - k) (02 - k2) + 2m* — 2m?p; - k)

U? U U

Summing all four terms up yields

. 4m* 2m? U . 4m* m?2 m? . 4m* m?2 m?
=29 +————)+2g9 +—+—|+2g t Tt
gt 4m4+2m2 S\ 50 (a 4(1+1)2+4 2<1+1> u s

I\vz" 7y "u)TI9\"™ 5Ty m\sTU)TsTU

10.6.4 Mandelstam Variables in the Center of Mass Frame

We consider the center of mass frame and choose our coordinates such that El points along the z-axis:
ki =k7(1,0,0,1), p; =pi(1,0,0,—B).

Since we are in the center of mass frame, we have kY = k9 and p? = p2. The only thing which can
change for the outgoing particles with respect to the incoming ones is the direction, in which they go
to. We can specify this direction in terms of a single scattering 8, as the amplitude should be symmetric
with respect to a polar angle ¢. Thus, we can write

ki =k?(1,sin0,0,cos0), py =pY(1,—psind,0,—p cosb),

such that we still have k2 = k? = 0 and p7 = p?. If we now use the dependencies
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L L k9
Ptk =k —pip)i=0 & ﬁ=p_:(l):
1

s = (p1 +k)? = (pf + kD)2,
where we used for the last equation that in the center of mass frame we have p, + l_c)l = 0, we find

s=(p;+k)?=m?+2p; - ky =m?+2k2(1 + B) = m? + 2k2(p? + k9) = m? + 2k%/s

s—m? s +m?
e k)= e pd=+s—k¥=
1 s p1 1 s
and thus
$2 — mt
u = (p, — kz)?> =m? —2p; -k, = m? — 2p{k?(1 + B cos§) = m? — s (1+ B cosH).
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11 THE OPTICAL THEOREM AND THE WARD-TAKAHASHI IDENTITY

11.1 The Principle of the Optical Theorem

11.1.1 Equation of the T-Matrix
Ifwe plug S = 1+ iT into STS = 1, we find

1=Sts=(1-irHA+iN=1+T—iTt+7TT o  —i(T-T") =TT

11.1.2 Derivation of the Standard Form of the Optical Theorem
If we put a matrix element with two arbitrary multi-particle states |[{p;}), |{p;}) around both sides of
the equation —i(T — TT) =TT, we find

—i({p3ITHp3) — (3T |w3)) = (3| TT|{p:3).
In section (>8.2.2), we defined a matrix element M as
2m)*6(p — q) - iMpyiqa, = KHaidnlTHp:})
= ((p3ITT{gidn) = gl Tl DT = @m)*6(0 — @) - My 400,

Thus, the left-hand side of the equation reads
—i(@HITIED) — (EAITT ) = =1 (M0 = M) - @D*6@ =P,

To write the right-hand side in terms of matrix elements M, we neeed to plug in a complete set of
intermediate states,

(p3TTT|{p:3}) = j{dql}n (3T [{a}n){adnl TIP3),

where |{g;},) is an n-particle intermediate state. We also used {d3§;},, := [I/~, d3§; as a short-hand
notation. Now we can insert the matrix elements M:

<{P{}|TTT|{P1'}> = Z J{dqi}n M{;;}_{qi}nM{pi},{qi}n 2m)*s(' — )2r)*s(p — @).
n=1

Since the second §-function ensures that p = g, we can set ¢ = p in the first §-funtion. This §-function
(2m)*8(p’ — p) also appears in the result for the left-hand side and therefore drops off. We are left
with

i (M o) — {r}{p} f {dgi}n 2m)*6(p — @) My, (0, Mip i (an:

n=

11.1.3 Special Case of Forward Scattering
Let’s consider the case of forward scattering of two particles, i. e. {p;} = {p;} = {p1, p.}. Since it always
holds that A — A* = 2iIm A4, we find

2Im M (py,p2 = P1,02) = f {dg;}, Cm)*6(p — q) |M (P12 = {qi3)1>
n=1 —d¢n

Recall from section 9.2 the formula
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|M (p1, 02 = {qi3n) 1> dopy, = 4J(p1 - p2)? —mims do,

where d¢,, = {d§;}, - 2n)*5(q — p). Thus, we find

2Im M (py,p2 = P1,02) = 4\/(191 "p2)? — mfm% Z f do(p1, p2 = {qi}n)-
n=1

=0tot(P1,p2 ~anything)

11.1.4 Optical Theorem in Centre of Mass Frame
In the centre of mass frame, it is

-

_(E1\ _ [ [P2+m? _(E2\_ [ [P+ m3
D1 = = ) P2=\_=]~= .
p 7 p

N

Thus, the square root in the prefactor can be written as

\/(P1 -p2)? —mim3 = J(E1Ez +p?)? —mims

= \/(ﬁz +m2) (B2 + m) + 2E,E,p? + p* — m2m? = |p|\/2p2 + my + m, + 2E,E,

= 131 {25: 2 + 3 + 3 = [5G + 27 = [FlEen,
where E_,,, = /s is the total centre of mass energy and. Thus, in this frame, the optical theorem reads

Im M (p1, P2 = P1,P2) = 2|P|EcmOior (P1, P2 — anything).

11.2 Branch Cut and Discontinuity

11.2.1 The Matrix Element is Real below the Multiparticle State Threshold

Recall from section 7.3 that an interacting propagator includes all possible N-particle states. The
single particle state has an invariant mass M = m, where m is the rest mass of the particle, and the
invariant masses M of all the other states form a continuum starting from M > 2m. Thus, the
threshold energy for creating a multiparticle state is s, = 2m.

If we consider a scattering process with centre of mass energy/invariant mass s, intermediate
multiparticle states with virtual particles can always be formed, but if those virtual particles should
go on-shell, we need an invariant mass s > s,. And only then M (s) receives an imaginary part.

11.2.2 Discontinuity at the Real Axis
We can analytically continue M (s) and interpret it as a function of a complex parameter s € C. Since
M (s) isreal for s < s, in this regime we can write

M(s) = (M),

since for any (otherwise) real function of a complex variable f(z*) = (f(z))* holds. Since both sides
of this equation are analytic functions of s, we can analytically continue them over the whole complex
plane and the relation must still hold.

We discussed in (>12.2.1) that only for s > s, intermediate states can go on-shell, that is only then the
denominators of propagators vanish. Thus, M (s) is not defined on the real axis for s > s,. We say, the
complex plane has a branch cut at the real axis. But with our analytically continued M (s) we can still
examine its behaviour close to the real axis, thatis at s = sy + i€, where sy = s, and sp € R. [f we plug
in s = sg + i€ into the equation above and then take the real and imaginary part, we find
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M(sg + ie) = (M(s - ie))*
= Re M (sg + i€) = Re M (sg — i€),
Im M (s + i€e) = —ImM (sg — i€),

since Re A = Re A" but Im A = — Im A*. Focusing on the imaginary part, we see that if we approach the
real axis from above, that is sg + ie with € = 0, we get the imaginary part Im M (sg + i€) =
—Im M (sg — i€), whereas if we approach the real axis from below, that is sg — ie with € - 0, we of
course get Im M (sg — i€). The difference is the discontinuity

Disc M (s) = iImM (sg + i€) — i ImM (sg — i€) = iImM (s + i€) + i Im M (sg + i€)
= 2iImM (sg + i€),

where the limit € — 0 is implied as usual.

11.3 The Optical Theorem for ¢*-Theory

11.3.1 Amplitude with Feynman Rules

The diagram
p/2+q
P2 — p=pt+p;
p]/' 1 2

p/2=q
has - according to the Feynman rules - the amplitude
i i

(/2 +q)?%—m2+ie(p/2—q)?—m?+ic (—=id)

1
i SM = EJ d*q (—it)

A? 1 1
= d4'_
2.[ q(P/2+q)2—m2+i6(p/2—q)2—m2+ie'

The factor 1/2 is the symmetry factor.

11.3.2 Poles of the Amplitude
In the centre of mass frame, where p = (p°, 0), the q°-integral has poles at

(/21 q)>—m?+ie=0
& pifitp-q+q -mP+ie=0

= (pO/Z + qO)z = Eg — i€ (using Ez = VG + mz)

& p°/2+q°=+'(E; —ie) (using /E;—ie=Ea—i€>

e ¢"=Fp°/2 +' (E5—ie) = qgi,,

where the sign +’ can be chosen independently of +, thus we have four different poles. Note, that the
poles g3,/ belong to the denominator (p/2 + q)* — m? + i€, thus the dash-less plus-minus sign is
swapped.

For +' = +, the imaginary part of q° is negative and for +’ = — positive. Thus, we have to poles above
the real ¢° axis and two below:

78



-p°/2-E; p°/2-E; Im q°
[ ] [ ] t Re qo

Note that the imaginary part of all poles is proportional to € and thus infinitely small. The real part, on
the other hand, is less restricted: Since p°, Eg > 0, the two outer poles will always stay the outer for
arbitrary values of p° and E - Moreover, the real parts of the outer poles and separately also the real
parts of the inner poles are symmetrical w. r. t. the imaginary axis.

Since we have also an integral over g, the energy E; can take on arbitrary (positive) values larger than
m.p° = p? + p? is fixed to some value larger than 2m. Thus, the real parts of the two inner poles can
be positive or negative, depending on the precise values of p° and Ej.

11.3.3 Replace the First Propagator by a Delta-Function
We will close the contour in the lower half plane. Recall residues theorem from the footnote on page
26 and consider the integral

f dz f(z) " _120 = —2mi Z res (zf—(zz)o'zi)'

The sum over i or z; respectively will certainly include z; = z,, but may also include additional
residues of the function f. Let’s evaluate the contribution of the residue z; = z,:

fdzf(Z)Z 1Z = —2mi res( f(ZZ) 'Zo) + o= =20 (7 — 2,) Zf(ZZ)
e -0 ~ Zo|,_
= =2mif(zy) + - = —Znijdzf(z) 85(z —zp) + -+,

where the + - stand for the contribution of the other residues. Thus, picking up the residue z; is
equivalent to replacing (z — z) ™! » —2mi 6(z — z,).

Now consider consider the contribution of the pole g2, (that is, we neglect the “+ ---” here):

S0 Azfd“_ 1 1 1 1
i =— q
2 q°—qis °—qi- q°—q% q°—qS
A2 1 1 1
=—2ni—fd4c7 §(q° - a%) 57—
q° —q$+ q° —q- g0 —q
fd3_ 1 1
= —]—
—q%s 9% —qi- q% —q%
~ 1 1 1 221 1
L L e L _
2 —p® —p® +2E; —ie 2E; —ie 2 2E; p°(p° — 2E; + i€)

A f dE; |3l !
“T 2n)? ool — 28,

where in the last step we used the substitution

= = 141 dlq|
Ez =+/1G|*> + m? = dEgz = dv/|G|> + m? = =

q

1 One can show that those will not contribute to the discontinuity.
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= dq=4nljl?dlj] = 4n |G| Eq dE,.

Interestingly, it is also possible to get to this result by replacing the whole propagator by the §-
function
1
(p/2—q)*—m

Obviously, we know from (>11.3.2) that the zeroes of the argument of the §-function are qfil =

5 = —2mi 6((p/2 + q)* —m?).

-p°/2 ' Ej. As before, we will only consider the contribution of q2,, as q°_ will not contribute to
the discontinuity (a fact, which we will not prove but accept). We find!

. /12 4= . 2 2 1
16M—>7.fd q(—27Tl5((P/2+q) _m))(p/z_q)z_mZ
= -2 -AZ d4— ) 0 0 1
- ’”7] P T 7 e L L e e
_2.2 _ 1 1 _lz _ 1 1
=_17fd3q| 0 _ po 0/7_g0 2_Ff2z_ 'y d*q _ 2
p° —p° + 24| (0°/2 - q2,)* — E; 2 2B (p° — Eg)" — EZ

'Azfd3_ 1 1 A2 4nm fwdE il 1
—i—= j——F——~=—i——— i lj| ———.
2 ZEapO(pO—ZEﬁ) 4 (2m)3 m q po(pO—ZEZI»)

The two last steps are precisely the same as for the calculation with residues theorem.

11.3.4 Replace the Second Propagator by a Delta-Function

We are interested into the discontinuity with respect to the Mandelstam variable s = p° and this
discontinuity only exists for € = 0 (which is, of course, always implied). Obviously now, the integral is
convergent for p® < m/2, such that M is manifestly real, and divergent for p® > m/2. If the function
M (p°) is continued to the whole complex plane, there is a branch cut starting from p® = m/2 with a
discontinuity

Disc M (p°) = i ImM (p° + ie) — i Im M (p° — ie).
To evaluate this discontinuity, we use
1 x ¥ ie x _ e

1
= = ¥ =P TFins(x),
x+ie x2+€2 x24+€?2 x2+4 €2 x ()

where P denotes the Cauchy Principal Value. In our case, this identity reads

1 _p 1
p® —2E;+ie " p®—2E;

¥ ins(p° - 2E3)

and when we evaluate the discontinuity, only the second term survives:

1 We use the §-function identity
1
5(g() = ) = 8(x = ),
(969)= 2. 15z "

where x,, are the zeroes of g(x). In our case, we have g(q°) = (p/2 + q)? — m? and hence

d d
9'@") = d—qo((p/z +q)? —m?) = d—qo(p2/4 +p-q+q®—m?) =p°+2q°
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Disc M (p®)

_ A dn T Ig] (il pl n§(p® — 2E5) | — il T1+'6(° 2E;)

—me R R L e N R et
/‘1_2

—lIm4(2 )3f dE; g - 2m6(p —2Eq)

Recall that Disc M' = Disc § M, since the leading order amplitude has no loop and thus no imaginary
part and thus no discontinuity.

Again, we get the very same result, if we replace the propagator in the original amplitude by a 6-
function:
1
(p/2+q)? -
If we go back to the last calculation in (>11.3.3) and replace also the second propagator with a §-

function, we immediately see that the denominator of the propagator will end up as an argument of
the §-function and everything else stays the same:

— =2mi §((p/2 + q)* — m?).

/’{2
[ SM 7] d*g (—2mi §((p/2 + @)% — m?)) (=271 6((p/2 + )% — m2))
A2 4m (™
_ ST T T 0 0 _ .
= —2mi (i) NCISE fm dEj |q| 6(p (p 2Eq))
A2 4 (® 1
= — _— - Al — 0 f— -
=2 (2n)3fm dE; |q|p0 8(p° —2E3)

Im?2 » jwdE |*|1 2mi §(p° — 2E5) = i DiscM (p°)
= mn4(2n)3m qqp0 miolp g) = iDisc p°).

Hence, we have proven that we get the discontinuity of the amplitude by replacing the propagator
with §-functions:

/12
i Disc M (p°) = 7[ d*g (—2mi 8((p/2 + @)* —m?))(-2mi 6((p/2 + @)? — m?)).
11.3.5 Amplitude with Independent Momenta

The amplitude with k4, k, together with a §-functin §(k; + k, — p) instead of q is equivalent to the
one with g from (>11.3.1):

— | d*k, d*k 2m)*6(k + k, —
f ! 2k—mz+ze k3 — 2+ie(n) (ey +kz =)
:_fd4 1
—m2+16 (p—ky) —m?+ie
= d*q ! ! i M
_2 (p/2+q)2—m2+16 (p/2 —q) —m?+ie -t ’

where we substituted k; = g + p/2 in the last step.

11.3.6 Discontinuity with Independent Momenta
If we replace the propagators by §-function we will get the discontinuity

22 o
i Disc M = — f d*ky d*k, (—2mi §(k# —m?)) (—2mi §(k3 — m?)) (2m)*8(ky + ky — D).

Now recall from section 4.2 the definition of the Lorentz invariant phase space measure

dp = d*p - 2n8(p* — m*)6(p°)
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and plug it in:1
A2 o
iDiSCM - _7-[ dk1 dk2 (2”)46(](1 + kz - p)
Using Disc M’ = 2i Im M from section 11.2, we end up with

A? -

11.5 The Ward-Takahashi Identity

11.5.1 Attachment to an Electron Line between external Electrons

Let’s consider an electron line connecting two external electrons with momenta p and p’ of one of the
diagrams of M. An arbitrary number n of internal or external photons with momenta g; (but not the
one with momentum k) may be attached to it:

P pi p'

— — —

T R

The momentum of the i-th intermediate electron propagator is then given by p; = p + Z§'=1 q;- Now

suppose we insert the external photon y (k) after the i-th vertex:

D o K itk pa sk P K
— —_— —_— —

TS TS Y

The i-th electron propagator p; is split into two propagators p; and p; + k and all other propagators
to the right have their momentum increased by k. The contribution of the new vertex is given by
igy*e, = ige. If wereplace ¢ — k, this turns into igk. Including the two adjacent electron propagators,

we obtain the expression

i i i i

igk =1 (B th—m)—(p;—m)
pi+k—mgpi—m gpi+k—m(pl — Pi )pi—m
= ig (o k=) — (o -m)——)
-4 pi+k—m Pi m pi—m p+k—m pi—m pi—m

i i
_g<pi -m B +k—m)'
Including also the next-adjacent vertices and propagators, the structure of the diagram is (dropping

the —g)

i i i

e —m yﬂi+1 ( — ) y#i - ...
Pigrthk—m pi—m ptk—m pi-1—m

If we now attach the photon y (k) not to the i-th but to the i + 1-th position, the structure of the terms
above will change to

. ( : — L ) y#i+1 L yl«li L
Pigr—M Piggthk—m pi—m Pi-1—m

1 Somehow, we lack the 8 -function in our expression for Disc M. I assume that those are implicitly
contained in §(p; + p, — p): Since p° > 0, p?, p? should be positive as well.

82



Note that the second term of this expression cancels the first term of the previous expression. The
same cancellation occurs between any other pair of diagrams with adjacent insertions. Only the two
insertions at the very beginning and the very end have only one adjacent partner.

At the very beginning (left), an insertion on the left-hand side and right-hand side of q, yields

i i i i
left of g : b ( _ )
eroth p+k—m p1+k—my p—m p+k—m
oht of g - i ( i i ) s i
et ot 4a - p +hk—m p—m p,+k—m 14 p—m

Thus, the term which is not cancelled reads
i i
p’+k-m p+k-—m

At the very end (right), an insertion on the right-hand side and left-hand side of g,, yields

i i i i
ightofgy: - )y ,
rlg Y qn ?’_m p'+k—m y ?n—l_m p—m
left of g i u ( i i ) i
et ot n: p’+k—my Ppo1—M Ppitk—m p—m

Thus, the term which is not cancelled in this case reads

i i i
- ylin .
p—-m Ppn—1—M p—m

If we define q := p’ + k and add the factor —g we dropped before, the two non-vanishing terms are

i i i i
_‘g(q—k—m T p-m g-m p+k—m)'

Diagrammatically, we can draw our result as

kz e#—>k# p g—-k p+k q
=—g -

el o JETEE T

11.5.2 The Ward Identity

According to the “alternative form of the LSZ reduction formula” of the very end of section 7.5, the
contribution of a correlation function/a diagram to a S-matrix element is given by the coefficient of
the product of the poles

1
pi —m?

of all external particles (all particles on the mass shell) involved. In our diagrammatic formula, on the
left-hand side the poles of the external particles are given by

1 1 p+tm g+m
p-m g-m p>-m? q>—m?

On the right-hand side, the pole structure is

i i [ i

g—k-mp-m qg-mp+tk-m

83



Each one of these two terms contain one of the poles of the term on the right-hand side, but neither
contains both poles. Thus, the contribution to the S-matrix of the right-hand side vanishes.
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12 REGULARIZATION

12.2 Feynman Parameters

12.2.1 Feynman Parameters for Two and Three Factors in the Denominator
For n = 2 factors in the denominator with a; = a, = 1, we find

2 -
ﬂlzwfdx 4 SO TR x) I 6™ T) fldx L S—x—x)
L A; 2, T J, 1 @X (21'2:1Aixi)2?=11 rz(1) J, L e T Ax,)?

=1

1 1
= f dx1 2"
0 (Alxl +A2(1 _xl))

To get the formula given in section 12.2, we rename x; = x and A; = Aand A, - B.

For n = 3 factors in the denominator with a; = a, = a; = 1, we find

3 —_
1 F(Z?=1 1) ! 5(1 X xi) [ ™
Z - 3 —F(l) dx1 de dX3 Z:-;’_ 1

A T (B2, Apxg) ™

T3 fld dxo d (1 —x; —x3 —x3)
- T2(1) J, T @z 03 (A1xq + Azxy + A3x3)®

=2

To get the formula given in section 11.2, we rename (x4, x5, x3) = (x,y,z) and (4,,4,,43) = (4,B,C).

12.3 Dirac Algebra

12.3.1 Contractions of y-Matrices
y-matrices are defined - also in d dimensions - by

Hyv} =2,

Contracting with 7, on both sides, we find

2d = 2n,,m* =0, Yy =) =2vy, e Yy, =d=4-e
Furthermore, we find, using d = 4 — ¢,

Yy v, = vy v —vayY) =vE - 2nn —dyY = 2 - dyY = (e — 2)y”,

Yy yPy, = vry (P v} — vay?) = 2vPyY — 2 — yVyP =2y v 3 — (4 — DyVy”
=4 — (4= d)y?y? = P —ey?y?,

Yy yPyoy, = v v ({(v O vu} — vay®) = 2vyVy? — (40P — (4 — Dy yP)y°

1

=2y%yVyP — 4y° (E {V",yv}) + @4 —dyVyPy? = =2y°yPyY + (4 — )y yPy°
= =2y%yPyY +ertyPye.

12.3.2 Traces of Odd Number of y-Matrices Vanishes
Introducing > := iy %y 1y2y3, we find, using {y#,y"} = 2n*,

vyt =iyt = (D2 Ry oy Ry® = —viyS,
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5)2 =

0?2 ==y IOy = vyl = 1

=1 =-1 =-1 =-1

Thus, for an odd number of y-matrices in the trace we find

Vy5y5 = — Trysy# ...yvys = — Tryl‘ ...yv_
=1

Try#--y¥ =Tryt -y
During the first equal sign, we plugged in a 1 in terms of (y°)2. During the second equal sign, we
commuted the first ¥>-matrix through the odd number of other y-matrices to the left. For each
commutation, we get a factor —1 and since there is an odd number of them, one factor —1 remains.
Due to the cyclicity of the trace, we can then reunite the two > matrices (and let them disappear by
(y°)? = 1) without receiving any factor of —1. Thus, the trace equals minus itself and thereby vanishes.

12.3.3 Traces of Even Number of y-Matrices
For traces over an even number of d-dimensional y-matrices, consider

1
Tryky” =S Tr{yk,y"} = Trlg,

Tryty'yPy? = Tr((2n*” — y"y¥)yPy?) = 2007 Trly — Try 'y yPy?
= 2n*"nPo Trly — Tr(y¥ (2nHP — yPy#*)y°)
=2n*nPe Trily — 2n#*Pn¥? Tri,; + TryVyPyHy®
= 2n#"nP7 Trlg — 20#Pn"° Trlg + Tr(y "y (2nH7 - y7y*)
=2n*"nPo Trly — 2n#*Pn¥e Triy + 2nHonYP Trl; — TryYyPy y#

= TrytyYyPy? = P =0t + nHon¥P) Trig.

What is [ ;7 That is, what is the matrix dimension of a y-matrix (how many rows and columns does it
have), if we live in d Minkowski dimensions? d Minkowski dimensions mean that the indices y run over
d numbers, so there must be d different y-matrices all obeying their defining relation {y#,y"} = 2n*".
Usually, we want to choose a representation for the y-matrix with minimal matrix dimension. Ind =
4, we need for different matrices obeying the defining relation and the minimal matrix dimension
needed is 4. In d = 2 and d = 3 the Pauli matrices with Matrix dimension 2 do the job. Thus, for
example,

2, ford =23,

Tr1; = number of matrix dimensions = {4’ ford = 4.

12.3.4 Integrals of Four Momenta
The d-dimensional integral (thatis,u = 1,2, ...,d)

ar_
d®l

f D(1?)
vanishes, since the denominator D(p?) is an even function of p# whereas the numerator is an odd
function of p#.

The integral

e
K&
b2

vanishes by the same symmetry argument if y # v. This already suggests that we can substitute
1V - cl?n* (we need [? to get the dimensions right). After integration over [, something must carry
the Lorentz indices p, v and what else could it be than n*? There is no other tensor involved.
Moreover, this is the only choice to preserve Lorentz invariance. However, there could be in general a
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prefactor ¢ € R when doing this substitution. We can find it, when contracting both sides of the
equation with 7,,,,:

Jdd_ e #vfddl_ 1 Ty fddl_ 12 ltvfddl_ 12

= = = .
D2 =" D(1?) D(2) ~ !l D(1?)
For consistence, we obviously need

— =

[ 7
- Nw =N, = d.

12.3.5 Gordon Identities
We can proof this in the following way: First, we note that, using {y*,y"} = 2np*",

i i i
ol =Syt =Sty — vy = s (Y = Oty = viy) = ity =),

Plugging this result in, we find

u ((k Fp)HX + iok (k £ p)y Xuy,
= ((k ¥ p)*X — (y*y” —n*")(k £ p) Xu,
= U k*X — vy X T yFeX)u,
=, 2kHX — (v vV = v vk X T yFeXu,
= U (ey*X + y#*pX)u,.

Let us now apply pu,, = mu,, and ik = %, m. For that, we need to commute p through X. Thus, in the
case of X = y°, we get an additional minus sign and end up with:
_ U (my* + yFm)u,, forX =1
up((k +p)H*X +ic* (k£ p)Xu, = .
(ke ¥ p) ot (k £ ) X0y {ﬁk(my”yS tyty mu,, forX =y°
In the case of v spinors, the derivation is exactly the same. The only difference is, that for v spinors
PV, = —mv, and Uik = —,m. Thus, we get an overall minus sign.

12.4 Wick Rotation

12.4.1 Wick Rotation

We stated in section 12.2, that we can shift the integration variable (the loop momentum) k* — [* +
-~ in such a way, that the numerator of intgrang will become (I?> — A + i€)®. By the Dirac algebra of
section 12.3 (especially by the integrals of four-momenta in that section), also the numerator will be
simplified significantly: The integration variable [* will appear as [? only (we have proved this for
numerator terms ~ [* and ~ [#l" in section 12.3). Our loop integral will by now be of the form

2
fdxl dxnfd‘tl fgl: )25(1 X)),

where A, f can contain quantities like Feynman parameters or other momenta; that is, quantities that
are constants with respect to the d*[ integral.

We now want to evaluate the momentum integral over L. The integrand only depends on 2, but not on
individual components [#. Thus, if it were not for the minus signs in the Minkowski metric, we could
perform the entire four-dimensional integral in four-dimensional spherical coordinates. To remove
the minus sigs, consider the following: The integration over the l,-component has two poles at

B-12-A+ie=0 & lo=i/Z2+A—ie=J_r/72+A$i€+0(é2),
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where € = €/2v 12 + Ais still arbitrarily small (we will call € again € from now on). If the integral falls
off sufficiently rapidly at large |(°| in the complex plane, we can close the contour in the complex plane
at infinity without changing the integral since the integral is zero at infinity (light grey arrow in the
figure). Then we use the residue theorem due to which the form of the contour is irrelevant as long as
the same poles stay inside. Thus, without changing the value of the integral, we can instead of
integrating along the real axis integrate along the imaginary axis. To get there, the contour now also
includes two infinitely large quarter circles, namely in the first and third quadrant (black dashed
arrows). Now, the two quarter circles and the halve circle of this new closed contour do not contribute,
since they are at infinity. Thus, the integral along the real axis is just the same as the integral along the
imaginary axis.

Im{,
“'hﬁ\
~
—)2 . I AY
— |2+ A+ie 1 \
I \
X
[
T I 1o Rel,
\ [ X
\ [
\ I _)2 .
N I+ A—ie
N [

To achieve this mathematically, we substitute [° = il2 and I= TE. If we then integrate [ from —oo to
o, the integral goes along the imaginary axis of %, as desired. [ is now a Euclidean four-dimensional
vector in the sense that

=9 -1=@)?-G=—(U)*+13)=-13 d'l=id"l.

Since the new integration contour along the imaginary axis does not pass the poles (in the limit e —»
0), we can perform this limit without effecting the integral.

12.6 Dimensional Regularization

12.6.1 Surface of a d-Dimensional Unit Sphere
To compute the surface of a d-dimensional unit sphere, consider Gaussian integrals:

o a oo o
\/Ed = (f dx e_x2> = f dxl ---dxd e_x% "'e_xlzi = J'ddx e_fz = J'deJ’ xd_l dx e_xz,
—00 —00 0

where X was the d-dimensional vector ¥ = (xy, ..., x4)7. We can now substitute z = x? = dz = 2x dx
and find

\/—d_fdg 1f°° d/2-1 g —z—fdQ 1F(d/2) VAN fdQ _ 2?2 .0
n = dZOZ ze - dz d_F(d/Z)_' d

where
I'(x) :f dzz*1e™*
0

is the gamma function. Using d = 4 — ¢, we find
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27.[2—6/2

e (PR}

12.6.2 The Radial Integrals in d Dimensions
The formulas can also be given in the form

44l 1 T(h-d/2) 1

Z+M" (4m)4/2  T(n) An-d/2

diz 12 d/2 Tn—1-d/2) 1
(2 +M)"  (4m)a/2 T'(n) An-1-a/2"

Let us now prove the first of the two integrals and only in the special case of n = 2.1 Using that ; is
the volume of the unit sphere, we switch to d-dimensional spherical coordinates (the factor (2m)¢
drops out of [):

1 Q (© 1 Q 1(* 1
I=[d%l = f 141 dl = = j 4271 dy ————,
j FEZ+02 o), £ “F@+nz @emiz), * SN CEWNE

where we substituted x := [ = dx = 2l dl. Next, we substitute

A d 24 A(l 1) A(l—z)z1
= — = = —_— = — .
z x+A d (x + A)2 x x z Zz
This yields
d/2-1 0 2
1= U f (1—2z)/?71 z=4/2+1 ( gz (x+4) !
emd 2 ), —A ) (x +A)?
Qd Ad/2—2

1
_ dz (1 — 7)4/2-1 z=d/2+1
i 2 fo z(1—-2) z

We now use the definition of the beta function as well as its mathematical connection to the gamma
function:

RONG!

1
B(a,B) = J dxx% 1 (1—x)f1=——72
A 0 F'(a+p)
In our case,a =2 —d/2and f = d/2; hence

[ Qg AY272r(2-d/2)rd/2) 1 T@-d/2) 1 1 TI(e/2) 1
T 2ne 2 r(2) T (4m)4/2 T(2)  AZ-4/2 T (4m)2-€/2 T(2) A€/?

where we plugged in the formula for Q, from (>12.6.1) as wellas d = 4 — €.

12.6.3 Series Expansion of the Gamma Function
Let’s start with the simpler task, how to expand a®:

b€ = ea€Mb — 1 4 gelnb + O(e?).

Alright, and now let’s focus on the gamma function: Using xI'(x) = I'(x + 1), we can expand the
gamma function I'(a€) at € = 0 in the following way:

1 1 1
I'(ae) = &F(ae +1)= E(F(l) +T'(Dae + 0(e?)) = =Y + 0(e).

1 According to Pesking & Schroeder, the general formulas can easily be verified. I was not able to do that,
however, I did not try too hard.
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We used here that I'(1) = 1 and the derivative of the gamma function I'(x) at x = 1 is given by —1
times the Euler-Mascheroni constanty = 0.577.

Note that we obviously have
r'(m+ ae) 20 r'(b) for m > 0.

Next, consider I'(—m + ae) for some m € N \ 0. We can pull as many arguments of T in front of it
using I'(x) = x~T'(x + 1) until the argument becomes positive when € — 0. In the denominators
(that is, the factors x~1), we can directly set € - 0 - except for the last one:

_1 1 1 1
I'(—m + ae) _q'—m+1“'—m+(m—1)‘—m+ae+mr(a€+1)
= ! 1 _m
C(=m)-(=m—1)-(~1) ae [(ae+1) =—-—T(ae +1)
_( m!) <E_y+0(6)>'

where in the last step, we expanded I'(ae + 1) as above. Comparing to the expansion of I'(a€), this
formula obviously contains also the case m = 0. For us, only the special case a = 1/2 will be relevant.

12.6.4 Expanding the Integral
We want to compute this integral in d dimensions, that is we convert

- 1 - 1
2 dHy——= 2Efddl—.
g f YN A BN (PN E
Using the formulas that we derived so far in section 12.6, we find

_ 1 g*u¢ T(e/2) 1
gzuejddl‘g (Z+0)2 € T(2) A2
Ft4) (41m)% 2 (2)

€/2
- g_zr‘(e/Z) (4”“ 2)
T

(4m)? A
g® (2 € Amu?
= an)? (Z —-v+ 0(6)> (1 + Eln A + 0(62)>
2 2 4 2
= (fn)z (Z +1n e y + 0(6)>
2 (2 4mpte
G+ 00)
3 g2 2 ﬁZ
= am)? (Z + IHX + 0(6))
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13 DIVERGENCES IN QED

13.2 The Vertex Correction

13.2.1 Diagrams Contributing to the Vertex Correction
The blob I'* is the sum of all diagrams that cannot be split into two diagrams by removing a single line.

That is, it contains, for example, the following term:
o P S s S STt Y SO i S
p P’

A %

However, it does not contain a term like

since cutting along the dashed line would split the diagram into two separate diagrams. This is part of
what we mean by ig,I'* an “amputated” amplitude. What we also mean by that, is that ig,'* does not
contain propagators, spinors or polarizations vectors of its external lines.

13.2.2 General Form of the Vertex Amplitude

The structure of the object I'* is far from arbitrary. The Feynman rules only allow for the appearance
of y#,p*,p'* and constants like m or g, within I'*. Of course, each term within I'* must carry exactly
one index, namely u. Thus, the most general form is

T* = Ay* + Bp'* + Cp* = Ay* + B(p'"* + p*) + C(p"* — pH).
It will turn out to be convenient to work with the combinations p'# + p* instead of p* and p'*.

Aside from constant numbers, the coefficients A4, B, C can involve scalar products of y#, p* and p'*.
However, scalar products between two y-matrices can always be reduced to numbers, like in the
simplest case of y,y* = 4 (see section 12.3). Scalar products between a y-matrix and a momentum,
that is p and p’ reduce to m when applied to an adjacent spinor: pu, = mu, and ,/p" = mu,,. Thus,
without loss of generality, we can assume that 4, B, C do not contain any y-matrices. Trivially, we can
also ignore the scalar products of momenta with themselves, since they just give the masses p? =
p'? = m?. The only thing left is p’ - p or, equivalently, g2 = (p’ —p)? = —2p’ - p + 2m?. Hence, the
coefficients 4, B, C must be functions of g2 (and of constants like m) only.

The Ward identity from section 11.5 will help us to further simplify the structure of I'*. It implies
TyThu,q, =0 & g% =0.

Let’s see what happens if we apply g, to the three terms of our I'*:
quAy* = Ag =A(P' —p) -0,

aB@*+p")=Bq-p +q-p)=B(@ -p)-p+® —p)p)
=B(m*—p-p' +p -p—m?) =0,

0 CR*—p)=Clap' —q p)=C(@'-p) '~ @ ~p) D)
=Cm?—p-p'—p' -p+m?) =C2m* - 2p'-p) = C(p' —p)* = Cq*.
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The first term will vanish when sandwiched between #, and u,, due to pu,, = mu, and " = mu

P p'
The second term vanishes directly, only the last is left over. Since the sum of all three terms must

vanish due to the Ward identity, we find C = 0. Thus, we have arrived at the form
* = Ay* 4+ B(p'* + p*).

No further true simplifications are possible. However, it is conventional to bring this expression into
a different shape, using the Gordon identity from section 12.3. Taking its version with X = I and the
lower sign of +/+, it reads (for p’ instead of k)

Uy (" +p* +ic® (p' — Py, =mu, (Y* + vy,

_ o _ - (pH APt 10",
= Up' Y Uy = Up! om + >m Up.

where o#V = i[y#,y"]/2. Thereby, we can use it to swap the p’* + p#-term with a ¢#¥q,, term (since
['* is sandwiches by u, spinors):

ighHv
[# = Ayt + BQ2my* — ich7q,) = y Fy(q?) + ——1.

F,(g?),
m 2(q@?)

where
Fi(¢*) = A+ 2mB, F,(q?) = —2mB.

13.2.3 Amplitude of the NLO Vertex Correction by Feynman Rules
Using Feynman rules, we want to note down the vertex in the diagram

p—k

B 4
kk+q
q}

Using T'* = y# + §T* + ---, we want to evaluate the quantity &, 6T*u,, as it appears in the amplitude
M of the complete Feynman diagram from the beginning of section 13.2. Note that one factor ig was
already denoted outside of 6T, which is why the three vertices of the diagram above give us only two
factors of ig. Thus, we find1.2

_inva i U i ,
(p—k)?—v2—A2+ie k+q—m+iey k—m+ie
_ig? f T Uy YVl +g+myyFk+my, w,

((p—k)2—vZ—- A2 +ie)((k+q)? —m? +ie)(k? —m? +ie)

- i f s (¥ Ck + @)ytkey, + myY (ke + @v*y, + my yHey, + m*y yty,) Uy
((p—k)2—=v2—=A+ie)((k+q)?> —m? +ie)(k? —m? + ie)

L, 6T u,, :fd“k u, igy” 9v° u,

1 Using our standard trick
1 pt+m

p—m+i6=p2—m2+i6'

2 Note, that we already added here a Pauli-Villars regulator —A?. In (>13.2.7) we will see, that the
momentum loop integral is ultraviolet divergent and we therefore need to regularize it; we will choose
Pauli-Villars regularization for that. Thus, we are going to need the expression for the amplitude including
this regulator.

Similarly, since this integral is also infrared divergent, we added a small photon mass —v? to regulate an
infrared divergence.
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Before we are going to introduce Feynman parameters in (>13.2.4), let us already simplify this
expression a little bit with some Dirac algebra from section 12.3, namely yVy*y, = —2y* and
yVy°yty, = 4n*° and yVy°yH*yPy, = —2yPy*y?°. Thereby, we find

w, (—2ky*(k+¢q) +4m(k + @* + 4mk* — 2m?y#*) w,
((p—Kk)2—v2—=A*+ie)((k+q)? —m? +ie)(k? —m? + ie)

i, (kyt(k+q) —2mQ2k + Q* + m?y*) w,
((p—k)?>—v2 =72 +ie)((k+q)?—m? +ie)(k? —m? + ie)

UL, 6T Uy, = —ingd‘*l?

= Zingd‘*l;

13.2.4 Introducing Feynman parameters
In section 12.2, we found the following formula for introducing Feynman parameters for a
denominator of three factors:

1 —
ABC

d(1—x—-y—2)
(Ax + By + C2)¥

1
2[ dx dy dz
0

In our case, this formula transforms our denominator in the following way:

1
((p—Kk)2—v:—=A*+ie)((k+q)?> —m? +ie)(k? —m? + ie)
1 §1—x—y—2)
=2‘f0 dxdde D3 )

where D is shorthand for

D=((p—k)?*—v:—N+ie)x+ ((k+q)?*—m?*+ie)y + (k* —m? +ie)z
=k? + 2k - (qy — px) + p?x + q*y —m2(y + z) — xv? — x/A\? + ie.

Here, we made use of the §-function in the integral, due to which x + y + z = 1. If we now define
l=k+qy-px & k=1-(qy —px),
our D depends on [? only (and not on other powers of [):

D=1*-2l-(qy—px)+ (qy — px)* + 21 (qy — px) — 2(qy — px)* + p?x + q%y
—m?(y +z) —xv?—xA\* +ie
= 12— (qy —px)* + p*x + ¢*y —m?(y + z) — xv? — x\* + ie
=P —q*(?*—y)+2p-qxy —m*(x®? —x+y+2z) —xv? —x\* +ie
=1?—-q*y(—x—2z)+2p-qxy —m?(x? —2x + 1) — xv? — xA* + ie
=12 +q%yz+q*xy+2p-qxy—m?*(1 —x)? + ie
=0
=124 q%yz—m?(1 —x)? — xv? — x/A\* + ie,
where in the last step it was used that
2 =

+2p-q=q*+2p-q=q¢*+2p-q+m* —m*=(q+p)?*-m*=p”?—-m

If we assign the abbreviation N to the numerator of the expression for ﬁpré‘l"“up, we now found!?
1 N
— _ . 2 4_
i, 6T u, = 2ig f d*l fo dxdydz26(1—x—y— Z)E,

where D =12-A, +ig, Ay = —q*yz +m?(1 — x)% + xv? + xA?,

N =1, (kyt(k+q) —2m(2k + Q" +m?y*) u,.

1 Obviously, d*k = d*l. Note that N still contains k, which is to be view as a function of [ in this context:
k(D). In the next step, we will change from k to [ in the numerator as well.
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13.2.5 Simplifying the Numerator with Dirac Algebra
In (>13.2.4), we introduced the substitution k = [ — (qy — px) for the denominator. Of course, we also
need to shift the numerator it that way at the same time. After doing that, recall from section 12.3, that

m R 2
d4— =0, fd‘*l == !Wfddl—.
f D3 D3 4" D3

Hence, at the first arrow “—”, we simply plug in k = [ — qy + px. At the second arrow “=”, we use our
integration considerations to replace [# — 0 and [#1¥ — n#VI?/4:

N = iy (ky* (k + @) — 2m(2k + @)* + m?y*)u,
- iy ((F— gy + pO)y (E — gy +px + ) — 2m(21 — 2qy + 2px + @)* + m?yH)u,
=ty (4 + ly* (—qy + px + @) + (—qy + p)y*d + (—qy + p)y*(—qy + px + 4)
— 2m(—2qy + 2px + @ + m*y*)u,

)

1
Ty (le MoV Y*r° + (—gy + p)v*((1 — y)g + px) — 2m((1 — 2y)q* + 2p*x)

:—Zyy-

2
+m y”) Up

1
= Uy (—Elz)f” + (—qy + pOY*((1 — y)g + px) — 2m((1 — 2y)q* + 2p¥x) + mzy“> u,
—A

From (>13.2.2), we know that the general form of I'* and thus also 6T* must be?

' = Ay* + B(p'* + p*) + C q*.
Tpru—pk

Obviously, the —12/2- as well as the m?-term will contribute to A. Let us then take a closer look at the
term A. Always remembering that those terms are sandwiched between the u-spinors,? we use

PU, = Mu,, Uyp' = Uym = Uyrguy = 0,
ayt* = —yHta + 2a¥, yHa = —ayH + 2a# = ab=—ba+2a-b
where the last to identities were derived in (>10.4.1). Then,

A = (—gy + p)y*((1 — y)g + px) = —y(1 — Y)gytg — xygy*p + x(1 — y)py g + x*py*p,
=:<,ll1 =:</12 =:</13 =:</Z3

A; = —y(1 = y)(—v*e+2q")g - y(1 - y)y*q?,
A, > —xy(—yHg + 2q*)m = —2xym(my* —p'* + q*),
=V“f)’—17‘§=—19’V“+2p’”—V”p—>—2my“+2p’”
Az = x(1=y)(=y*p + 2p")g > —x(1 — y)ytpg = —x(1 — y)y*(—gp + 2p - q)
- —x(1—y) (—mytq+ y*2p-q) = —x(1 — y)(2Zm?y* = 2mp'* — q*yH),

—-2myk+2p't =2p-(p'-p)=2(p-p'-m?)=—(p'-p)?=-q>
(siehe A5)

Ay = x2(=y*p + 2p")p - x2(—y*m + 2p*)m

1In (>13.2.2) we started from this expression in terms of 4,B,C and then went on and derived an
expression in terms of the formfactors F;(q?) and F,(q?) instead. In the end, we will use the formfactors
here as well, but for now it is easier to compute §T* in terms of A, B, C. The transition from 4, B, C to
F;(q?), F,(q?) will be very easy.

2 When we use the fact that the expressions are sandwiched between u-spinors, we are going to use a little

«__»

arrow “—” instead of an equal sign “=".
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= A =yF - (y(1-y)g® — 2xym® — x(1 — y)(2Zm* — ¢*) — x*m?)

+q* - (—2xym)

+p'* - Qxym+ 2x(1—y)m)

+ pH - (2x%*m)

=y# ((x+y)A - y)g* —xm?(2 + x))

+q* - (—2xym)

+p'*- (2xm)

+ pH - (2x%*m)

Using x + y + z = 1, we arrive at, the following N with N = ﬁp:IVup:

— 1
N =yH. <_El2 + (x+y)A—y)g? —xm?(2 +x) +m2)

+q* - (—2xym — 2m(1 — 2y))
+p'*-2xm
+ pH* - (2x*m — 4mx)

=yt (—%lz +(1-2A-y)g*+ (1 - 2x—x2)m2)

+q* - (—2xym — 2m(1 — 2y))
+p'*-2xm
+ p* - (2x%m — 4mx).

Thus, we already found the coefficient 4; it’s the large bracket which is multiplied by y#. To find B and
C as well, we need to calculate them from B and C using the equation

Bp' + Cpt = B/ + ph) + Cp'™ —pk) = (B + O)p'™ + (B — O)p*
In our case, since g* = p'* — p#,

B = 2xm — 2xym — 2m(1 — 2y), C = 2x’m — 4mx + 2xym + 2m(1 — 2y)

and the equation relating B amd C with B and C is easily solved: From B = B+ Cand C = B — C we
immediately find
B+¢C
B=—=mx(x—1),
2
B-C
C =T:m(—x2+3x—2xy+4y—2) =m(x—2)1—x—-2y)=mkx—2)(z—y).

Hence, our result is

N= ((—%lz +1-y)A—-2)g*+ (1 —-2x— xz)mz) yH+mx(x—1) - (p™ +pH)
+mx—-2)(z—y)- q“).

In (>13.2.2) we concluded by the Ward identity that C, i. e. the coefficient of g#, must always vanish.
And in fact, it does: The denominator D (see at the end of (>13.2.4)) as well as the §-function is
symmetric under exchanging the integration variables y < z, whereas our C here is antisymmetric.
Therefore, we can forget the Cq*-term of the numerator.
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Let’s now, again, switch from 4 and B to F; and F,.1 From the formulas in (>13.2.2) we have
F (g% 1?)=A+2mB = —%lz +(1-y)1-2)q¢*+ (1 —2x —x*)m? + 2m?x(x — 1)
= —%lz +(1-y)A-2)q*+ (1 —4x + x*)m?
F, = —2m?x(x — 1) = 2m?x(1 — x).
The numerator can now be given in terms of those F;:

ia*q,
N = u ! (y”Fl(qz lz) + m F2>up

Let us summarizes our result so far (we plug in the denominator D at this point):

26(1—x— y—z)_
(12 —-A, +ie)3

“q,

1
1L, 6T u, = 2ig? J d4l_J dx dy dz ()/“Fl(q2 12) . Fz)up,
0

where Ap = —q%yz +m?(1 — x)% + xv? + x/\?,
- 1
F(¢%1%) = _Elz + (1 =y)(1—-2)q* + (1 — 4x + x*)m?,
F, = —2m?x(x — 1) = 2m?x(1 — x).

By their definition, relationship between F; and §F; is

20(1l—-x—y—2)

(12 — Ay + i€)3 Fi(e®.1%).

1
OF; = Zingd“l_f dx dy dz
0

13.2.6 Wick Rotation
Our momentum integral is exactly of the form that we preannounced in section 12.4, when we
introduced the concept of Wick rotation. Thus, let us perform the Wick rotation by substituting

=i I=; = 2=—12,  d*l=id*l,
where [ is an Euclidian four-vector.

_ (! l—-x—y—z
i, 6T u, = 4g2Jd4lEj dx dy dz 5 7 24 3 )ﬁ ' (y"Fl(q ,—12) .
0 (I +40)
Note, that the i from the substitution of the measure combines with the i that was already present to
a factor —1, which cancels the factor —1 from the denominator (12 — A,)3 - —(I2 + A,)3.

ay

Fz) Up,

The formulas for A, F; and F, are given in the end of (>13.2.5).

13.2.7 Regularization with Pauli-Villars

Consider the result of (>13.2.6) assuming that we had not introduced a Pauli-Villars regulator A. That
is, use A := A,_, instead of A,. Focus on the momentum integration variable l;. It appears in the
denominator (IZ + A)® and in the numerator term F; (g%, —12) = 1%2/2 + (terms independent of [).
Thus, we have two types of momentum integrals:

fd‘l-l_E; and fd4lE )
@ +1)° (F+AP

1 We use F; here instead of F;, since we introduced F; as the formfactors when expanding I'* in y* and
" q,. However, here we only expand the numerator N. In contrast to F;, the formfactors F; can also
depend on [2.
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where A = —q?yz + m?(1 — x)? + xv?. Using the formulas of Pauli-Villars regularization in section
12.7, we see that the first of these two integrals falls into the category n > 2 of the first integral given
in section 12.7. There, we stated that renormalization is not necessary for this term, since it is
convergent. However, the second of the integrals above falls into the category n = 3 of the second
integral given in section 12.7. That is, it is divergent, unless we introduce a Pauli-Villars regulator.
Hence, let’s do just that. Now would be the point to go through the whole calculation of the previous
section again, using a photon propagator with a Pauli-Villars regulator A # 0. Fortunately, we have
already included it in the beginning.

Well, the Pauli-Villars regularization does not simply tell us to introduce a photon mass A into the
propagator - it tells us, that we need to subtract a massive photon propagator from the usual one. That
is, in Pauli-Villars regularization, §T* gets two contributions, one from a massless and one from a
massive photon. Correspondingly, the momenta integrals above will turn into

T ] 1 1 by 1 1y 11
f E( m3 f EQV+AP (F+Amg‘1mw4Z_Ea‘z@¢ﬂZ

and

_ 12 _ 12 12 Q
4 —E 4 E _ E 4
@t @ hf(@é-rA)S ag-+AA)s> e A/ = s/

where we plugged in Q, = 272 and b; = 1/4. In the first integral, we could apply the limit A - oo.
Let’s apply these discoveries to our loop integral from (>13.2.6). Let’s start with the F;-term and let
F=1-y)A-2)¢*+ (1 —-4x+xDm? =  F(q%-12)=12/2+F

be an abbreviation for the I; -independent terms in F; from the very end of (>13.2.5). Then,

introducing in the “—”-step the second massive photon propagator, we find

b(l—x—y—2)_
(%+AF

1
Uy 6THU, = 4ngd4l_5f dx dy dz Uy (y”Fl(q ,—lE)) u, + F,-term
0

1
—>4ng dxdydz§(1—x—y—1z)
0

ﬁry”fd“l_ L ! (12/2+ F) w, + F,-term
P PN +0)3 (12+8,)3)%F P2
2 [ _ 1 1 1
= 4g fdxdydz5(1—x—y—z)u ryH (2(4 )ZlnAA/A+?-"2(4 )zA)uP+F2 -term

F
(4 )zf dxdydz6(l1—x—y—2z)u ry”<lnAA/A+ A)u” + F,-term
= U, y* 6F1(q%) uy + Fp-term.

F, does not depend on [2 at all (see (>13.2.5)), hence its term becomes
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N - o [ §(l—-x—-y—2z)_ [io"q, -

Uy 6THu,, = Fi-term + 4g fd lEfO dxdydz FNE ' ( > Fz)up
1

—>F~'1-term+4g2f dxdydz§(1—x—y—1z)
0

_ id*q, o 1 1 7
Y om F\(Z+0)F  (B+ap)3) 2"

i 2 ! _ io%q, 1 1.
= F-term + 4g f dxdydzé6(l1—x—y—z) u ’W(WZ&)

7 ic*q, (1
:Fl-term+(4 )2f dxdydz6(1—x—y—2) Uy ——— o (AFZ>up

= ‘”qv
= Fi-term + u,y 8F,(q?) Up.

Obviously, since the F,-term is not divergent at all, we could have skipped the step “—” where we
introduced the Pauli-Villars regulator, and we would have ended up with the same result.

We can now extract the expressions for §F; and §F, from the two computations above:

1-y)1- + (1 — 4x + x2
8F = 0 )Zf dx dy dz §(1 —x — y_z)< = L=y Z)qA( x x)m>,
2m2x(1 —
6F, = (41 )zdedde(S(l—x— —Z)#’

where we plugged in F from above and F, from (>13.2.5). Also, since we are going to take the limit
A - o in the end, we could also replace A, — xA2. Also, note for the prefactor that

29> 2-4ma_ «a
(4n)? (4n)? 27
A is the one without Pauli-Villars regulator, thatis A = —g?yz + (1 — x)*m? + xv?.
13.2.8 Infrared Divergence of the first Form Factor

The first form factor contains a logarithm term and one term ~ 1/A. To make the infrared divergence
apparent, consider the special case g2 = 0 for the latter term only in the limitv = 0:

a 1d dy dz 5(1 )(1 4x + x%)m? dx (1— (1—4x+xz)m2
an xayaz Xy A(g? =0) f x (1 —x)2m?2

(1 x)? — 1 1 2x
fd =fdx(1—x— )=——f dx .
1—x 0 1—x 2 0 1—x

This integral is clearly divergent at the upper boundary.

Note, that the integration over dy, dz and the §-function lead to a factor 1 — x. Why is this the case?
To understand this, let’s define a kind of a Heaviside function,

1, a<z<b
0(z,a,b) = {0 elseZ

Then, consider
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1 1 1
fdxf dyf dz f(x,y,z2) 6(1—x—y —2z)
0 0 0
1 1 [e5)
=f dxf dyf dz f(x,v,2)0(2,0,1) (1 —x—y —z)
O1 O1 —0
— [ ax [ ayfey1-x-30a-x-300
% % 1 1-x
=f dxf dyf(x,y,l—x—y)e(y,O,l—x)=j dxj dy f(,y,1—x —y).
0 0 0 0

In one step in the middle, we used 6(1 —x —v,0,1) = 6(y,0,1 — x). That is okay, if 0 <x <1,
becausethen0 <1 —x—y < lisequivalentto0 <y <1 —x.

From this general case, we easily can find the special cases

foldxfoldyfoldz f(X,Y)6(1—x—y—z)=f01dxf01_xdyf(x,y),

foldxfoldyfoldz f(x) 6(1—x—y—z)=f01dxfol_xdyf(x)=foldx (1—x) f(x).

13.2.9 Explicit Result for the second Form Factor at Zero Momentum
Recall that F,(g?) = 0 + §F,(q?) + ---. Using the formula for § F,(q?) derived in 13.2.7, we find in the
case g2 = 0 (since §F, is not infrared divergent, we can immediately set v = 0)

a (1 2m?x(1 — x)
Fz(q2)=5F2(0)=—f dxdydzé(l—x—y—z)m
2m 2x(1—x) 1 a
_—J dx (1 - 2(1 P 7TjodeJc—Z—,

where we used fol dxdydz§(1—x—y—2)f(x) = f01 dx (1 — x)f(x) from (>13.2.8).

13.2.10 Vertex Renormalization Factor — Relation to the Form Factor
Note that the prefactor of F, contains a g, such that

r#(0) = y#F,(0)

and hence,
yh =2, T#(0) = (1+ 6)(y* + y#8F,(0) + 0(a?)) = v* (14 6F,(0) + 57 + 0(a?))
= 89 = —sF,(0).

13.2.11 Vertex Renormalization Factor — Explicit Computation
Since setting g2 = 0 inside §F; (¢?) also makes the integrand independent of the Feynman parameters
y, z, we can simplify the integral for g2 = 0 as follows:

5P = —sF,(0)

=—Ef0 dxdydzc?(l—x—y—z)(ln(1

x/\? (1 — 4x + x*)m?

—x)2m? + xv? * (1—-x)?m? + xv2>
x/\? (1 — 4x + x*)m?

- _Efo dx (1 =) (ln (1 —x)%m?2 + xv? + (1—x)2m? + xv2>'

Note that we used fol dxdydzf(x)5(1—-x—y—2z) = fol dx (1 — x)f(x) from (>13.2.8).

99



13.3 The Electron Self-Energy

13.3.1 1Pl to Leading Order
To order a, —iX is the amputated (that is, without external propagators/spinors) diagram

p—k

» 5 %

Let us call this diagram alone —i2®. Luckily, the computation of this diagram is a lot easier than the
vertex correction.

FEYNMAN RULES (from section 8.2):

From Feynman rules, we find (let us again provisionally put in a Pauli-Villars regulator A and a small
photon mass v)

i fayY —iMuy
k—my+ie gy (p—k)>—v2—A2+ie
k+m 1
kz—m(z)+iey”(p—k)2—v2—A2+ie'

—ix®@(p) = fd,‘*lz igy*

= _g2fd41} y*

FEYNMAN PARAMETERS (from section 12.2):

First, we introduce Feynman parameters to combine the denominators according to section 12.2:

1 1 fl 1
- —=| dx
k2 —mg+ie(@—k?+ie  Jo (k2 —m2+ie)(1—x) + ((p — k)2 —v2 — A2 + i€)x)”

1
1

=| d

fo x(kz—m(z,(l—x)+(pZ—Zp-k)x—xvz—xA2+i6)2

1
1

=| d

fo x(l2+2xp-l+x2p2—m(2,(1—x)+(p2—2p-l—2xp2)x—xv2—xA2+i6)2

1 1 1
=] d =| deme—-r-——,
fo x 2+ x(1—x)p2 —mi(1 —x) — xv2 — xA? + i€)? fo x (12 = Ap +i€)?

where we introduced [ := k — xp, plugged in k = [ + xp and used
Ay = —x(1—x)p?+ (1 —x)m3 + xv? + xA%
DIRAC ALGEBRA (from section 12.3):

In the numerator we use y*ky, = —2k = —21 — 2xp and y*y, = 4. By symmetry, the numerator-
term proportional to { vanishes after integration and we are left with

(! —2xp +4m
_in@(p) = — Zfdﬂf dx —F 0
@) =g , o atier
WICK ROTATION (from section 12.4):
Performing a Wick rotation 1° = il%,1 = I, such that d*l = i d*l; and 2 = —I2, we find

—2xp + 4m,

1
—iz®(p) = —i Zfd‘*z' f d
l (p) l’g E 0 X (lé‘}‘A)z

PAULI-VILLARS REGULARIZATION (from section 12.7):
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When we go to spherical coordinates, it is obvious that the momentum integral is divergent. We
regularize with Pauli-Villars by subtracting a heavy mass photon propagator:
1 1 1
—_— ﬁ —_— .
(p—k)?+ie p—k)32+ie (p—-k)?—A+ie

Thus, using A := A,_, as well as the integration formulas from section 12.7

—iz@(p) = —igzjldx (—2xp +4m )fd‘*l_ LI !
0 F\(2 + 1)2 (l2 + A))?

= —ig de( 2xp+4m0)(2 )4 lnAA/A fdx( xp +2my)InA, /A

=i fd( t2m)y
= l2n0x xp + 2mo) In—-,

(4 )?

where we used Q, = 272, g = V4na as well as the fact that we are interested into the limit A — o, so
that we can replace A, - xA2. Since p? = p?, we will from now on give I, as a function of p rather

than p; that is, 2@ (p) —» 2@ (p).

13.3.2 Adding up 1PIs
We now want to examine what we can draw graphically as

FT{Q|7 p (P ()[Q) = + —(1ph— + —(1P{1PI)- +

We already talked about the fact that the mass in the Lagrangian m, differs from the actual particle
mass m. We will now impose that particle masses m are poles of the propagators. Since the propagator
on the left-hand side accounts for the whole physical particle, including self-interactions, we take m
as its pole: i/ (p — m). The expression on the right-hand side is what we get from Feynman rules, thus
we use the mass m, here. We can turn it into a geometric series and find

FT{Q|T % () (1)]Q) _ . : ;
i [ L L ! :
B p—mg +19_m0 (_iE)p_;LnO +P—m0 (_iz)p_mo (_iz)P_mO t
zp—lmoz<(_lz)P_lm0> zp—lm()l_(_l [ :19_77;0_2
n=0 12)19_"10

13.3.3 Structure of the Interacting Propagator
In section 7.3, we derived the Killén-Lehman spectral representation in the form

[o2]

(17 $COFOI) = Z,DrCe—ym)+ [ dM? p(M?) BiCx = 3, M),
(2m)?
where we have already turned the equation into its equivalent form for the application to fermion
fields. Dr(x — y,m) is the Feynman propagator with mass m (in the fermion case, it depends on m
rather than m? only). Its Fourier transform is

~ i
FT Dp(x —y,m) =

p—m

The terms in the integral are obviously finite at p = m. Thus, we find

T(QT Yp()P(H|Q) =

Zyl .

+ terms finite at p = m.
-m
Since we just computed
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FT(Q|T 9 ()Pp(»)|Q) = m’

we can equate our results in the limit » — m as follows:
i 2yl
p—-mp—X(® p-m

13.3.4 Corrections to the Mass and the Field-Strength Renormalization
To leading order perturbation theory, the full propagator should give us back the non-interacting
propagator:
iZ, i B
p—m p-mg—I(@) p-—m

+ O0(a).

Thus, up to first order, we naturally can take Z, = 1 and m = mg or () = 0. But beyond the first
order, the () # 0 will shift the pole of the propagator away from m,. Thus, already to next leading
order, we need to correct also our mass m = mg + dm.

So m should be defined as the pole of the full propagator: In analogy to 1/( — m) having a polep =
morp — m|y_,, = 0, we say that 1/(p — mo — £(p)) has a pole at the m which fulfills the equation

P‘mo—E(Pﬂp:m:O = m=m0+2‘.(19=m).

If we do a Taylor expansion of the denominator close to the pole = m, we find?

0
p—mo—E(m) = (m —my ~ X(m) + 5 (p —mo ~ X)) (o= m)
=0 p=m

3 02(p)
= (1 - ? p=m> (19 - m)

If we plug this in into the equation above, we find

= —1 Z2 = ap

p—m oZ(p)
(p—m)(l— a: 39=m)

iz, i ( 2@

-1
p=m>

13.3.5 Correction to the Mass

Usingm = my + Am® + 0(a?) and the order-a result of X, (we canreplace my = m + O(a)) we find

(recall that p? = p?)

x/\?
(1—x)m? —x(1 — x)m? + xv?2

1
a
dm® = 5 p = m) = 2= f dx (—xm + 2m) In
0

xA\?
(1 —x)2m? + xv?

a 1
:—f dx (2—x)mln
21 J,

13.3.6 Correction to the Electron Field Strength Renormalization
UsingZ =1+ 52(2) + O0(a?) and the order-a result of I, we find

- @
7, - ( ) > _ 1, 0® 9@ (p)
p=m op

+0(a)=1+ o5

p=m p=m

+ 0(a).

op

1 Being physicists and not mathematicians, let’s avoid to be disturbed too much about what it means to take
a derivative with respect to a matrix ».

102



Thus,

x/\?
—x(1—x)p%2+ (1 —x)m? + xv?

2@ (p) a0
dp pem T 2mop

1
62(2) = f dx (—xp + 2m)In
0

1 xAZ
o o dx (—x In —x(1—-x)p?+ (1 —x)m? + xv?
(—xp + 2m)(=2px(1 — x)) )

- —x(1—x)p?+ (1 —x)m? + xv?

p=m
o« 1d | x/N? 12— x(1 — x)m?
2, {mxm (1 —x)2m2 + xv?2 x (1 —x)2m2 + xv2 )

where we could set my = m + O(a) again.

13.4 The Photon Self-Energy (Vacuum Polarization)

13.4.1 General Form of the Photon 1PI

The only tensors that can appear in [1*Y(q) are n*¥ and g*q" (tensors with y-matrices, like y#yV,
cannot appear, since then I[1*Y would be a matrix itself, which it isn’t). Using the Ward identity from
section 11.5, we know that q,IT1*V(q) = 0. Writing [1*V(q) in full generality, we can deduce

¥ (q) = Ap¥ + Bgtq” = qI"(q) =Aq' +Bq’q" =0 <  B=—A/q,
where 4, B are in general functions of q2. Thus, we will write
= n*(q) = " —q*q"/q*)A = (¢*n* — q*q")11(g?).

Note that lowest order diagram within the 1PI is the one electron loop diagram. Thus, in any diagram
that contribute to [1*¥(q) massive particles are involved. Therefore, we expect that [1*V(q) or I1(g?)
respectively does not have a pole at g2 = 0. That is, [1(q?) is regular at g> = 0.

13.4.2 Computation of the Electron Loop — Feynman Rules
Using Feynman rules to translate the diagram

ptq
_q’:_
b
into mathematics, we find
i i
ki (q) = (-1 fd‘*‘T ( # igy” )
il (q) = (-1) Py 9 s e —mT e

pt+m v ptg+m )

— —_(2€ dd—T(u
g,uf p r]/102—m2+i¢sy (p+qg)2—m2+ie

This time, we want to use dimensional regularization instead of Pauli-Villars regularization. Thus, we
wrote down d%p and g — gu¢/? (see section 12.6).

13.4.3 Computation of the Electron Loop — Feynman Parameter
Using a Feynman parameter, we can write
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1
(p? —m? +ie)(p + @) —m? + ie)
1

1
=f dy . Y
o (ypr-m2+ie)+ (1 —y)((p+q)2 —m?+ie))

1
1
= d -
fo Yo+02—m2—y2p-q +q2) + ie)?

1
1
=| d
fo Yo+ A—»@p g+ D) —m? + ie)?

1
1
—f dx > -
0 (P%2+x2p-q+g?) —m?2 + ie)?

1
1
=| d
-fo x(p2 +2xp - q +x2q% + xq? — x2q%? —m? + ie)?

1 1 L 1
=| d =| dx———7<
,[0 x(lz +x(1 —x)q% —m? + ie)? JO x(lz — A+ i€)?
Here, we substitutedy = 1 — x = f01 dy = — flo dx = fol dx and introduced [ := p + xq. We have
A=—x(1-x)q*+m?

13.4.4 Computation of the Electron Loop — Dirac Algebra
Let us now tackle the numerator of i[1#Y,

N=Tr(y*(@+m)y' (@ +¢+m))

We now want to regularize the momentum integral by dimensional regularization, so we need the
general formulas for the Dirac algebra from 12.3. Recall, that the trace over an odd number of y-
matrices vanishes and that

Tryky” =, TrykyPy"y? = 4@HPn¥ — ntnf + nhonPv).

By 4, we mean 4 := Tr I, (see section 12.3). In the end, we can simply turn 4 into Tr I, = 4. Thus, the
numerator takes on the form

N=Try*(e+m)y"(®+4¢+m)

=Tr(y*py’ (@ + ¢ + m) + my*y¥(p + ¢ + m)) = Tr(y*y?y"y’p,(p + )¢ + m*y*y")

= AP = n*nP? + nHnP)p, (p + @) + AmPnt

= 4"+ 9" —n""p- 0+ @) +p"( + Q" + m*n™)

=4(pt+ " +p' @+ " =" (- (0 +q) —m?).
Having substituted [ = p + xq in the denominator, let’s see how the numerator is changed by this
substitution. Of course, the integration will then be over d?![ instead of dj. Note, that we immediately
drop terms linear in [#, as they are going to vanish after integration by symmetry (see section 12.3).

There are three terms in the numerator, the first to of which are equivalent under u < v. Thus, we
only need to consider two substantially different terms (we pluginp =1 — xq):

PP+ @)Y =U—x)*(+ (1 —x)q) ="V —x(1 — x)gtq¥ + (terms linear in 1),

- (p+q) —m?) =-n*(1-xq) -1+ (1—x)q) —m?)
= —n* (1> — x(1 — x)q? — m?) + (terms linear in [).

Thus, the total numerator in terms of [ instead of p reads

N/4 = 21*1Y —n*1? — 2x(1 — x)q*q¥ + n*(x(1 — x)q? + m?) + (terms linear in [)
=-(1-2/dn* 1> = 2x(1 — g q” + n* (x(1 — x)q* + m?),
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where we dropped the linear terms and replaced [#IV — [2n#*Y /d, according to section 12.3.

Thus, we have arrived at

SRV _
11'[(2) =

—4g°uc fldx f gap Z3 =2/ 2 - ZX(lz_ x)q”qv +n* (x(1 — x)q% + m?)
0 (12 — A+ ie)?

13.4.5 Computation of the Electron Loop — Wick Rotation
After performing the Wick rotation from section 12.4, [° = il}, [= TE, d4l =i d%l, 1? = —12, we find

- 1 _ (1 =2/d)n* 12 - 2x(1 — x)gtq” + n*’ (x(1 — x)q? + m?)
'1'[’“’=—4'25deddl E :
M) g K 0 x E (lg + A)2
where A=—x(1-x)q%+m?

13.4.6 Computation of the Electron Loop — Momentum Integral in d Dimensions
The numerator has one term ~ [% and one constant term (with respect to [#). Using the formulas from
section 12.6 in the case n = 2, we find (using I'(2) = 1)

fddl‘ 1 T(e/2) 1
F(2+A)? 7 (4m)2-€/2pe/?

440 12 _dF(—1+6/2) 1
f E (lé +A)2 ) (4m)2—€/2 A-1+e/2

The term with the [2-term in the numerator of (>13.4.5) will then read, usingd = 4 — ¢,

= (=2/dn*™ I 2y \(dT(-1+¢€/2) 1
JddlE (12 + )2 _<( _E)YI” ><E (41)2€/2 A—1+e/2)

_(4—€ WF(—1+6/2) A

B ( 2 ) (4m)2-€/2 pe/2

__ (_1 +£)n#v F(_l + 6/2) A
2 (47-[)2—6/2 AE/2

r 2 1
B (47S+E)/2ﬁ(77w(x(1 —x)q? —m?))

where in the last step we used xI'(x) =T'(x + 1) and plugged in A = —x(1 — x)g? + m? in the
numerator. Putting those results together, we find

R SR I'e/2) 1
(" (x(1 = x)g* = m?) — 2x(1 — x)g"q" + n* (x(1 — x)q* + m?))
dig? (* ([ T(e/2) pe
== %fo x ((45:)—/'632#) (2x(1 = 20)(@®n* - q"q¥)
= (@*n* - ¢*q") iN®(g?),

which has exactly the structure prophesied. Using the expansions I'(ae) = 1/ae —y + 0(¢) as well as
A% =1+ aelnA + O(e?) (also for u and 41) from section 12.6, we find

. 2\ €/2 2

(4m)~—€/2 p€/2 A 2

2 4mp? 2 i
=Z+ln s —y+0(6)=z+ln%+0(e),

where fi? := 4mwu?e~". Thus, our final result is
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H(Z)(q2)=— (4 )2 f dx x(1—x) <2+ln~—2>

—Za/n
where A =—x(1-x)q? +m?.

Note, that we give I1(g?) at this point, whereas the quantity appearing in the formula above is il1(g?).
We have also dropped all terms vanishing by € = 0.

13.4.7 Adding up 1PIs
We can write the sum of all 1PI’s,

FT{Q|T AH(x)A¥(1)|Q) = AAA~AAn + +

using Feynman rules as

T(Q|TAu(x)Av(y)|Q)=(‘Zhw) +( qnup 1P (q) ;M)

+(ﬂ ine’(q) —— - i1 (q) qnnv>+~--

q2
—i —i
B ( qnz”v) +< qnzﬂp i(q*n*° — qPq*)1(q*) qn‘”>
—in 77 in
+< qz“p i(q*n”? — qq°)1(q*) 7 7= i(q* " — q*qMI(q?) qz"v) 4o

=(_Z’2‘”)+(_;Z“p (n5 qqu)n( 2))
= (- L2V (-2 e 2))

—i —i —i
_ ( va) +< Nup A2TI(q? >+ (% APTI(g?) Aﬁ“(‘f)) +

= A#

Ve

q”qo) ( o q"%) e 4" 4"409%4

tao _ (.m0
= AJAg - (770 - q2 v qz v qz qz qz qz

Using this last identity, we find
—in —in —in
T(Q|T 4,)4,»)|Q) = ( qz‘”) + ( qz”” Aﬁn(q2)> + (q—z"” Aﬁnz(q2)> +

(P (i) (3 e

n=1
_ T +—inup( p q”qv>( 1 1)
q? q*> \'"V q* J\1-Ti(¢*)
_ Tl —_l( B qﬂqv) - —_l( B ‘ht%/)
- qz + q? Nuv q?2 )1— H(.qZ) q? Nuv q2
_ —_t( 3 quqv) 1 Tl
>\ ¢ J1-T(g®)  q* ¢*

If we calculate a S-matrix element, this full photon propagator will be connected at one of its two ends
to the rest of the Feynman diagram. This rest of the Feynman diagram can be described by an
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amplitude MY, which carries an index v, since it must be connected to the polarization vector &, of
the external photon, which is not included in M. Thus, the full propagator and the rest of the diagram
together form the amplitude

(FT(Q|T 4,04, (»)|Q)) M.

When we now plug in the formula, we just derived for the full photon propagator, the momenta g,
meet the amplitude MV and vanish by the Ward identity. Thus, we only need to consider
—iMyuy 1

q*> 1-T(qg*)

FT(Q|T 4,()A,1)|Q) =

13.5 Cancellation of UV Divergences

13.5.1 Electron Propagator with Renormalized Sigma
Using
Zz=1+62, m0=m_Am
from section 13.3, we find
1 i 1 i
Zyp—my—3(p) 1+8p—m+Am—32(p)
i i

:p—m+Am—Z(p)+62(19—m+Am—Z(p))zﬁ—m—zk(?)
i iz
p—mo—X(p) p—m-—I(p)

where

Zr(P) = 2(p) — Am — 8,(p — m + Am — 2(p))
=3@(p) — Am®@ — 6P (p — m) + 0(a?).

13.5.2 Renormalized Sigma is UV Finite

Plugging in the explicit expressions, we find that Zéz) (the order-a contribution to X3) is - except for
the IR limit v — 0 - indeed finite; that is, the UV divergences cancel:

a (1 x/\? x/\?
Eéz)(p) = EJ dx ((Zm —xp) lnT -(2- x)mlnF
0

22 — x)x(1 — x)m? xA\?
—( 0 —xlnF> (p—m)>+0(a2)
=& 1dx ((Zm —xp) lnx—A2 —(2m —xm) lnx—AZ
21 ), A A0
212 = x)x(1 —x)m? x/\?

AO

a (! x/\? x/\? x/\? x/\?
=% . dx | 2m IHT—IHF —Xp IHT—ll’lF

22 — x)x(1 — x)m?
_ T

(—m)+ (xp — xm) IHF) + 0(a?)

(- m)) +0(a?)
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_a (! A° A )
_%-fo dx (Zm—xp)an—(p—m)F + 0(a?),

where
A=(1-x)m?—x(1—x)p?+xv?, A = A(p? =0) = (1 —x)?m? + xv?,
A=22-x)x(1—-x)m?.

Note that for # = m, the second term of Z; () obviously vanishes and also the first term gives zero
since

| A° _ (1 —x)?m? + xv? 3 (1—x)2m2+xv2_ .
" p:m_ n(l—x)mz—x(l—x)m2+xv2_ n(l—x)2m2+xv2_ ’

hence Zz(p = m) = 0.

13.5.3 Photon Propagator with Renormalized Pi
Using

Z3=1+63

from section 13.4, we find

1 —in*v 1 1 —ip? 1 _—in? 1
Zy q* 1-T(q?) 1+6 ¢q*> 1-T(q?)  q> 1-T(g?) + 68— 85M(qg?)
B q?> 1-Txr(q?)
—in* 1 —in* Zs
=

> 1-T(q»  q* 1-Tg(q?)

where
Me(q?) = TI(q?) — &5 + 6511(q2) = NP (g2) — 6 + 0(a?).

13.5.4 Renormalized Piis UV Finite
Plugging in the explicit expressions, we find that I1 is indeed finite; that is, the UV divergences cancel:

2a (1 2 7> 2 i?
n%(g») = 1@ (g?) - 62 = —7f0 dx (x(l —x) <Z + an> —x(1—x) <E + lnm>

2a (1! m?
=——f dx [x(1—x)In—,
T J, A

A =—x(1—x)g%+m?

where

Obviously, Hg) (0) =0.

13.5.5 Vertex Factor with Renormalized Gamma
UsingZ; =146, =1+ 61(2) + 0(a?) as well as F,(q?) = 0 + O(a?), we find
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. . 2 ia”qu 2
i9oZiTH =igoZ, | Y*F1(q%) + m F,(q%)

. io"'q
=1ig, (y” (1 + 8§2)) (1 + 5F1(q2)) + o Y F,(q%) + 0(0{2))

. ta*q
= igo (V” (1+6F (g +67) + ——Fa(q®) + 0(a2)>

. io"’q
=igo (V”Ffﬁ)(qz) e “F(q)) + 0(a2)>

(V“Fl(Z)( 2)+ v Fz(q2)+0(a2)>

g
Z1\Z3
where

FP =1+6R)+62,  g=1Zs0,.

13.5.6 The Renormalized Gamma is Finite
The only potentially divergent quantity within I is F; . However, plugging in the explicit expressions,
we find that F;  is indeed finite; that is, the UV divergences cancel:

Fir(q®) = 1+ 6F,(q?) + 62

?—’EFl(o)
— 2
_1+_fDx< il L 4=-n0-2¢ JAr(l 4x+x)m>
f xA? (1 —4x+x*)m?
—— | DX (ln— 0 )
_ (1 - (A -2)g* + (1 — 4x + xH)m? C(I-4x+ x%)m?
- _J ( A AO )

Note, that all UV divergences (in form of the regulator A) have cancelled. Here,
A=—q*xy+ (1 —-x)*m? +xv?, A= (1-x)*m? +xv

13.5.7 Absorbing the Field Strength Renormalizations into the Vertex Factors
Each full electron propagator can be written as a finite renormalized propagator times a factor Z,.
Each photon propagator can be written as a finite renormalized propagator times a factor Z3. And each

full vertex factor can be written as a finite renormalized vertex factor times a factor 1/Z,,/Z5 (if Z; =
Z3)
i i
= -7,
p—mo—1i(p) p-—m—Izx(p)
—in* 1 _—in? 1 e
2 1-M(q%) > 1-Tr(g®

igo*(q) = igl¥ -

1
Z5\Zs
Note, that on the right-hand side, only the physical mass and charge m, g = e appear.

External particles, that do not enter via propagators into the diagram, come - according to the
Feynman rules in section 8.2 - with factor ,/Z,, \/Z5 respectively.
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Each internal propagator is connected to two vertices; we can therefore split its factor Z; into two
factors /Z;/Z; and move each of them to one of the adjacent vertices. In the end, all factors Z; will
cancel precisely. For example, for Compton scattering, the factors Z; are distributed as follows:

ZoJZs ZyyJZs
We have just the right number of Z; in the numerator and denominator to cancel.

Why are the external legs only contribute a factor \/Z-, despite having a full propagator blob? Or in
other words: Why do external legs have a propagator blob, despite we do not write down propagators
for external lines according to Feynman rules? To understand this, we need to consider the
“alternative form” of the LSZ reduction formula of section 7.5. It connects the S-matrix element (the
thing that appears in the cross section) with the corresponding n-point function as follows

Z ivZ
(H?“W) (“}’ilm> Spa = FTAQIT ¢ (x1) -+ d(y1) -+ Q)

2

p G -mA\ (o, pi-m
And Spa = (Hi=1 7) (Hi=1 27) FTAQIT ¢p(x1) - p (1) -+ 1)

For QED, the products obviously contain the fermion and photon propagators with their field strength
renormalization factors Z;. Note that only for external particles there is a factor (ql2 - mz) /iVZ. That
means: The n-point functions do contain (full) propagators like

iZ 2 external particle iZ P
——————————————————— ﬁ
p—m—2Zp(p) pom p—m

also for external particles. However, external particles are on-shell and obey » = m and hence
2z (m) = 0. For cross sections, we do not need the n-point function, but the S-matrix element and for
the S-matrix element the propagators of external particles are cancelled by the LSZ reduction formula
above. However, the LSZ reduction cancels only a factor of \/Z and hence a factor of Z; /\/—i = \/Z
remains.

Obviously, this cancellation of the Z;'s works to all orders in perturbation theory (if Z; = Z,). The
amplitude that corresponds to the diagram above - including all self-energies and the full vertex
correction - reads, according to Feynman rules

_ 9 iZ, ( ig )
V7750 (7 s (2 ) ) (7e)
= —4na ﬁS‘u F"mw ue,,.

If we are interested in into the NLO correction only, we simply expand this amplitude in a:
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i
p—m—Zp(p)
—4na ug, (y” + (SFI’;) (

—4ma e, Ty I¥ ue,

i

+
p—m p—m

i
—4ma ue (y“ y”) + (y“
# ( p—m P

+ (y“

(~i2e)) =) 0 + 8T e, +0(a”)

i

v u L v)
m6FR>+(6FR p—my

i

(—iZ;z(P))ﬁVﬁ) ue, + 0(ad).

Those four terms correspond to the diagrams

The letter “R” denotes that those loop corrections are described by the renormalized (finite) I}, X5
instead of the infinite I'#, X.

Note that the full propagators of external (on-shell) particles are cancelled in the S-matrix element
due to LSZ reduction, hence corrections at the external legs do not contribute. However, one correction
of order a? is missing, namely the following one:

However, this diagram is UV finite: The denominator receives one factor of momentum from each
electron propagator and two from the photon propagator, makes seven in total. The loop integral d*p
contributes only four factors of momentum. Hence, the loop integral will be UV convergent and we do
not need to show any cancellations in this case.

13.5.8 Equality of the Vertex and Fermion Renormalization Factor
The equality Z; = Z, to order-a means

Z,=2, o 1+62+0@)=1+67+00@>) o &2 =57

In the sections 13.2 and 13.3 we have derived the following expressions:

5@ _ a fl dx(1— (1 x/\? (1—4x+x?)m?
o 2m), x o\ (1—x)2m2+xv2 (1—x)2m?2+xv2/)
1 2 2
@ @ x/\ x(1—x)m
0, =— | dx|—xlI 22— .
2 271_[0 x( xin (1 —x)2m2 + xv2 +22-x) (1 —x)2m? + xv?2

We are now going to proof, that those expressions are equal by showing that the difference vanishes:

1 2 2
@ _ @ _ % x /A x(1—x)m
0,7 —=6"=—1 d 1-2x)1 202 —
2 1 271_[0 x <( *)In (1 —x)2m2 + xv? +22-x) (1 —x)?2m?2 + xv?2

(1 —4x +x?)m? )

(=% (1 —x)*m? + xv?

Considering the first term only, let's perform integration by parts:
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x\?
(1—-2x)2m2 + xv2
(1 — x)?m? + xv? A?
xA? (1 —x)*m? + xv?
x/N?
B ((1 —x)2m?2 + xv?2)2
1 1 21 —x)m?+v?
= —j;) dxX(l—X)<;_ (1—x)2m2+x1/2>
3 1 I x(1 (1 — x)?m? + xv? —2x(1 — x)m? + xv?
T fo xx(1—x) (x((l —x)2m? + xv2) - x((1 —x)2m2 + xvz))
1 _ 2 1 _ 202
=—f dxx(l—x)( A+~ x)m >=f dx 1+ —x)"m .
0 0

x((1 —x)2m? + xv?) (1 —x)2m?2 + xv?

1
f dx (1—2x)In
0

1
=—f dx x(1—x)
0

(=2(1 —x)m? + v2)>

Plugging this result in, we find

6(2) _ 6(2)
i 1a fi (—(1 +x)(1—x)*>m? 22 —x)x(1 —x)m?
0

T o (1 —x)2m?2 + xv? (1 —x)?m?2 + xv?2
(1—x)(1 — 4x + x*)m?
(1 —x)2m?2 + xv?

1 1 — ¥)m?
- %f dx (1 —(x)zjrcl)zn-ll- xv2 (A +x)(1=x) +2(2 - x)x + (1 - 4x +x?))
0

1 _ 2
- %J dx 7 _(1)2;?21:1- xV2 ((1+x2) + (4x - 2x*) + (1 - 4x +x?)) = 0
0

=0
= 62(2) = 61(2).

13.5.9 Proof of the Equality of Z1 and Z2 to all Orders in Perturbation Theory
Recall the Ward-Takahashi identity from section 11.5, which we gave pictorially as

ké g = ky -k p+k q

p q
27 S —9 555 - 555
Insertion >
Points p§ 5 5 q

(where g is actually the bare charge, which we by now call g,). The straight line is an arbitrary
electron line through a Feynman diagram, connecting to external electrons. The photon lines attached
to it below can be either external or internal, the latter case means they are connected to another (or
the same) electron line.

Let us apply this general formula to the special case of a diagram with only to external electrons and
the photon with momentum k shall be the only external photon. Then, the general picture of above
looks as follows:

k & — ky
D =—o0| D=, —, 77«
Insertion \ p p+k

Points

Despite having only three external particles, their interaction can be arbitrarily complicated. The sum
of all possible diagrams with two electrons photons and one external photon is described by the blob
on the left-hand side. That is just the vertex correction to all orders in perturbation theory. On the
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right-hand side, we have simply the exact electron propagator for different momenta. This is basically
the simplest special case of the Ward-Takahashi identity.

Let us call the full photon propagator with momentum S(p). Then, we know from section 13.3 and
13.5 that

i _ iz,
p—my—X(p) p—m-—2Ip(p)

Then, the right-hand side of the picture above is simply —g, (S(p) —-S(p+ k)).
On the other hand, we wrote the full vertex correction in 13.2 as
igol*(k),

where I'* also includes the sum over the insertion points. The I'* is contracted with the polarization
vector of the external photon, which will become & - ku for the Ward-Takahashi identity. However,
['* did not include reducible diagrams like

However, the blob on the left-hand side above does include such diagrams. Obviously, such a loop next
to a vertex is simply a correction contained in an electron propagator. Thus, the left-hand side of the
pictorial equation above is S(p)(igokuF“)S(p + k). Hence, we find

@) (igoku T (1)) S(p + k) = —go(S(p) = S + )
= ik, [*(k) = —(S"*(p + k) — S~ (p))
e ik, = —l%k.

2

In the limit k — 0, we have defined y* = Z; T#(k — 0) in section 13.2. For the equation above to hold
for arbitrarily small values of k, we need to have

) _ 1
lk‘uy‘u'Zl 1= _Z‘k =4 Zl = Zz.

13.6 Soft Bremsstrahlung

13.6.1 Amplitude for One Soft Photon
Consider an electron, which undergoes an arbitrary scattering process with amplitude M, and in
addition emits one soft photon of a small momentum k either before or after the process:

Using the Feynman rules for QED, the amplitude of the whole process reads
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i i
igy* e u, + Uge, gyt ——————
gy ey p'ku 1Y p +k—m+ie

!

iM=ﬁrM0 Oup

p p—k—m+ie

i [
=g (My———— e + —M’) .
lgup( 0p—k—m+iegk Ekp’+k—m+i6 o)t

Note that, of course, M, is a function of its incoming momenta, however, the correction of the small
momentum k < p,p’ of the soft photon can be neglected:

MO = MO(p’:p - k) ~ Mo(p’:p): M(; = MO(p, + k: p) ~ MO(p’f p) = M

Using some Dirac algebra, the amplitude can be further simplified. Those steps where already
conducted in (>10.4.1); for more details see there.

First, we bring the y-matrices to the denominator:

p—k+m p +k+m >
Up

lmz_gup’(MO(p—k)z—m2+iek k( + k)2 —m? +ie

There, in the denominator, the photon momenta k can be neglected compared to the electron
momenta p, thatisp + % = p. Next, we use @y’ = —yVa + 2a¥ and yVa = —ay’ + 2a" to get
(B +m)egu, = (—5p + 2p - g + meu, = (Zp ce g (—p+ m))up =2p - & up,
Uy (@ +m) = Uy (—p'e +2p" - g +gm) = ﬁpr((—p’ +m)e, + 2p’ - ek) = Uy 2p - g
In the denominator we find
(p—k)>?—m?=-2p -k, (' +k)>?—m?=2p" k.
Thus, the amplitude becomes in the limite = 0

, _ 2p-g  2p'- P e Pk
IM =~ gup:(]\/[o “2p- k+2p k]\/[())up g(p’-k ok Uy Mouy.

13.6.2 Evaluating the Photon Momentum Integral
BRINGING THE INTEGRAL INTO A NICE SHAPE:

The next step is obviously to evaluate the integral over the soft photon momentum k,
L . . " W
— = P& P fk Z p p
7._fdk2‘p,_k - fdk ( <p - pk)>
LAY A
f dk z Feu ey (p k p- k) (p k p-k)

A=1,2

We the sum over polarizations from (>6.3.1). To see that we can simply use Y., &x,&ky = —7,,, We can
use the standard trick and replace a €, by a k;:

oo (P _PEN(PY TN (Plk_pekN(PT P
R\ k pok)\p -k p-k R\ k p-k)\pk p-k

(this is just an explicit proof that the Ward identity holds in this special case). Thus, we find
L " u v v L " u !
[ () ) [ () )
v p'-k p-k)\p'-k p-k v p'-k p-k)\p'-k p-k

B L zp p mZ mZ .
_f dk <(p PR (p’~k)2_(p~k)2> =T —m2(Ty +17,),
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where

7 '_JLdl? 20 P’ Ty : dek
T k@ k) P (pek)?

where we split up J into its parts.

COMPUTE THE INTEGRAL J,,:

First, consider Tp- If we write the scalar product as

Pk =wywy— ﬁl_c) = Wy — Wi /a)z% —m2cosf = wpwk(l — By cos 9),

where g, == \/1 — m?/w? and w} = m? + p%, wj, = k2. The integral can be evaluated as

Iy = deié —f “ !
P (p-k)? ), 2m)32wy wrz,wﬁ(l — PBp cos 9)2

L

) w,%dwkfd 9 1 ) 1 2 L dwy
=2 | ——— cos =2r—
v 2m)3 2w, J_4 a)gw,%(l—ﬁp cosé?)2 wp1—=PB5 ), 2m)3 2wy
1 L

- _In<
(2m)%2m? nv

where we also simplified 1 — 7 = m?/wZ. Note, that J, is IR divergent (limit v — 0).

COMPUTE THE INTEGRAL 7,,,,

Slightly more complicated is the evaluation of the integral 7,,,,/, we even need Feynman parameters

pp"
for it. Using the identity for 1/AB from section 12.2, we can write

2p-p’
dk ————=| dx | dk
f [CRBICED) k)(p “k) J;) xf (x(p - k)+(1—x)(p’-k))2

=2(p- p)f dxf (Q()—k)z =2(p- p)f dx Jo(x)s

where Q(x) = xp" + (1 — x)p. Since Q does not contain the integration variable k, it plays exactly the
role of the momentum p inside J,, which is why we could give the momentum integral as J ). Note

that the mass m? in the result for 7, above is the mass of p, that is m? = p?, or

J ! ] L g ! 1 L
= — |n-— B = In-—
P @y W EmT G v
Plugging this result into J,,,,/, we find
I, _z2p pll Efl x ! =2p.p,ln£f1 x !
PP (2m)? Q*(x)  (2m)? vy  (xp'+ (1 -x)p)?

It now appears to be very easy: Just use the identity of the Feynman parameter again and the dx
integral will be equal to 1/(p’ - p). Unfortunately however, the square in the denominator of our
integral here is a four-momentum scalar product whereas the square in the Feynman parameter
identity is a simple square of numbers. Thus, we must proceed differently. If we define

q*=(p-p)?=2m*=-2p-p
we find that we can write

Q*(x) = (xp" + (1 — x)p)?
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x*m?+ (1 —x)?m? +2x(1 —x)p - p’

=x2m2+m2-2xm2+x2m?

m? —2xm? + 2x*m? + 2x(1 —x)p - p’
==2m2x(1-x)

=m?+ (-2m? +2p-p)x(1—x)

=m? —q?x(1 —x).

The complete integral now reads, using 2p - p’ = 2m? — ¢2,

Ty = 5| f dx — 2T 4
' = (271)2 N T mr e -

COMBINING THE RESULTS:

Thus, the whole integral reads

7=7 23,0 4+7,) = s fd il PR S
=t T TP T (2n)? "y 0 xmz—qzx(l—x) m (2m)2m?2 ny

m —q _ 1 12
<2n)2 (f o == %) 2)—Wlnv—zfm(q2>,

=:2fir(q?)

where we put the factor 2 from 2z (q?) as an exponent into the logarithm.

13.6.3 The Limit of Large Momentum

At least in the regime of —q? > m?, we can also evaluate the integral fiz(q%): We can now neglect the
squared masses, but then the integral over x does not converge anymore (note, that for a general —
the integral is not divergent; this divergence is only because of our approximation). If we fix this issue

by shifting the boundaries a little, we get
1/ (1 2m? — g2 —g?»mz 1 [ (1m*/(=a*) —q?
2) == d -2 = = -f dx——7——-2
fir(@?) (J Xz — 2x(1—x) ) 2< m?/(—q?) X —q%x(1 — x) )

_ _ 2
(Z—qln—q— 2> ~ ln—qz,
q> m

where we used

b 1 1—a 1-b b(1—a)
Jdxl—_x)—2(artanh(1—2a)—artanh(l—Zb))—ln ” —In 5 _lna(l—b)'

which yieldsinthecaseb=1—-a

1-a 1 1—-a)(1—-a 1-a)?
f dx ( ) ) ln( 5 ) T 2lna .
a x1-x  a(l-(1-a) a
13.7 Infrared Divergence in the Vertex Factor
13.7.1 Infrared Divergence of the Renormalized Form Factor

Consider the renormalized form factor from section 13.5, where the expressions for §F; are given in
section 13.2:
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8Fr(q%) = 6F,(q*) — 6F.(0)
_“ JD* (1 —x)’m? + xv? (1-y)(1—2)q? + (1 — 4x + x*)m?
- M =gtyz+ A= 0Pm? + a2 —q%yz + (1 — x)?m?2 + xv?2
(1 — 4x + x?)m?
(1—x)2m2+ xv2)

Here, we have already plugged in the expressions for A and A° and combined the two logarithms of
8F;(q?) and 6F; (0), which cancelled the UV regulator A. Also, recall DX := dx dy dz §(1 — x —y — z).

[t can be shown, that the term with the logarithm is finite, also in the physical limit v — 0. That is, it
does not contribute to the IR divergence. Let us therefore drop this constant term (together with the
1 in front of the whole integral) for the following examination of the divergence.

In the limit v — 0, the denominators blow up for x — 1, which means, by the §-function inside D%, that
v,z — 0 (this also is a true statement for the denominator of the logarithm, but the logarithm makes
the “blowing up” slow enough for the integral to converge). For the computation of the behaviour of
Fig atthe IR divergence, it is sufficient to examine how the integral behaves in this region, where x —
1 and y,z — 0. Hence, let us set x = 1 and y,z = 0 in the numerators. Also, since we are interested
into the limit v - 0, the behaviour of the integral in this limit will not change when we replace xv? by

v?:

q* — 2m? —2m? >

2 ~1f1 ey _
6F1r(q%) ZﬂOdXd)’dZ5(1 X—y—z) —q2yz+ (1—x)2m2 +v2 (1 —x)2m? +v2)

Using
1 1 1 1 1-x
dej dyf dzf(x,y,z)c?(l—x—y—z):j dxf dy f(x,y,1—x—y).
0 0 0 0 0

from (>13.2.8), we find

SFy (q?) ~ afld fl xd q%>—2m —2m?
1R T 2m), xO Y -¢?y(1—x—y)+ (A —x)?m? +vZ (1 —-x)?m?+v2)

We now substitute

w=1-—x, y =wé = dx = —dw, dy = wdé,

where the last differential identity holds, since x or w are constants with respect to y and &. Thus, the
integrals read

1 1-x 1-1 1-x)/w
f dxf dy=f (—dw) wdé = de df = f dw? f dé,
0 0 1-0

o/w 1 —dwz/z

which yields when plugged in into the formula for F; (q?)
5Fy. (¢7) f 4 f J q% —2m? —2m?
1R\q) = w d —q*wé(w —wé) + m2w? +v2  m2w? +v?

d d q" — 2m —2m?

f J f v (( 2E(1 — &) + m)w?2 +v2  miw? +v2>
Pt - Amitv? mi

471[ %@ ( l >’

21
—25(1—§)+m2n v? e

where we used for W := w? the integral identity

aw A1B+C
f BW+C_B C
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We can set v2 - 0 in the numerators. Furthermore, in the limit of v — 0, the logarithms blow up no
matter what the numerators are; anything proportional to g or m? is effectively the same. We
therefore write

5F1. (¢7) afld q% — 2m? | —qzormz+21 —q?% or m?
W), C\CEma—prm " T 2 e
a —q?orm?1 (1! q% — 2m?
=——ln——f de ~2).
21 V2 2Jo q%é(1—¢&) —m?
=fir(@?)

Note, that it was exactly this function fiz(q?) that we also encountered in section 13.6.

13.8 Cancellation of Infrared Divergences

13.8.1 The Cross Section Including the Vertex Correction
If day, is the cross section that corresponds to the amplitude M, that is

dO'O =cC |M0|2
with some proportionality c, then the cross section of the amplitude M, (1 + §F,g) reads
dO'V =C |M0(1 + 6F1R)|2 = dO'O . (1 + 6F1R)2 = dO'O . (1 + 28F1R + 0(0.’2))

13.8.2 The Sum of the Cross Sections
Using the explicit results for §F; from section 13.7 and for g27 from section 13.6, the total cross
section reads

do = do‘v + dO'B = dO'O . (1 + 26F1R + ng)

2 2 2
a —q“orm* « L o
=doay - <1 -2 %fm(qz) IHT + ;fIR(qZ) lnv—z + IR fll’lltG)
2 2
a —q“orm o
= . - — 2 -
doy (1 7Tf]R(q )In Iz + IR f1n1te)

and is completely finite.
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14 MEASURABLE CORRECTIONS

14.2 Imaginary Part of the Photon Self-Energy

14.2.1 Sign of the Mandelstam Variables
In a s-channel diagram, the two incoming particles with momenta p and k must have the same
masses; therefore, the Mandelstam variable s reads

—

s=(@+k)?=p*+k?+2p -k =2m%+2(poko— B - k).

Since

Poko = /D% + m? /Ez +m?2 > IﬁI|E| > |ﬁ||§|c059 =Pk

s is obviously positive.

For t and u, it is not so simple to tell whether they are positive or negative. However, Mandelstam
variables are Lorentz invariant and therefore we can switch into the centre of mass frame with the
following momenta:

incoming particles: p = (E,|plé,), k = (E,—|plé,),
outgoing particles: p' = (E,p"), k' = (E,—p").

For simplicity, we also assumed in this case that all masses are equal. Since we are in the centre of
mass frame, we have |p’| = |p|. For 0 being the angle between p’ and &, (thus 6 € [0, 7]), we find

t=@-p)*=2m?—-2p-p' =2m?—2(E* - |plé, - p") = 2m? — 2(|p|* + m? — |B|* cos H)
= —=2|p|*>(1 — cosB) <0,

u=(p-k')?=2m?—-2p-k' =2m? — 2(E* + |p|é, - p') = 2m? — 2(|p|?> + m? + |B|? cos 6)
= =2|p|*(1 + cos 6) < 0.

Since g? just equals the Mandelstam variable of the considered channel, we have g% < 0 in the t and
u channel and g? > 0 in the s channel.

14.2.2 Negative Argument of the Logarithm
The inequality

m? —x(1-—x)g?><0 = m? < x(1—x)q?
must hold for all x € [0, 1], since this is the region of integration in II(g?). Within this region, x(1 — x)
is at most 1/4, thus we can write

1
m? <x(1-x)q% < Zqz = q? > 4m?.

14.2.3 Logarithm of Negative Numbers

For real numbers x, e* is always positive and thus In % is not defined for ¥ < 0. For complex numbers
on the other hand, e may well be negative, if Im z = +m, since, for x € R, eX*im — _eX < (. Thus, we
should expect something like In(—e*) = x + im. Note, that the factor t+im must be here for any x, thus
for any ¥ = e*: We can just as well write

In(—=%) =Inx¥ + In(—1) = InX + im, for x> 0.

Unfortunately, we have this disambiguity, that In(—%) could either be In ¥ + iw or In ¥ — im. Thus, the
logarithm of a negative real number is still somehow ill defined. Complex numbers with non-vanishing
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imaginary parts on the order hand do not have this problem, even if the real part is negative. To see
this, we add an infinitesimal imaginary part to our negative real number —x:

—%+ie= Fetilr—e)

This can easily be understood graphically: To reach the point —% + i€ in the complex plane, one can
wander about an angle of +(r — €) along a circle with radius X. To reach —% — iw one wanders in the
opposite direction, about the negative angle of —(w — ¢€).

Imz
—X + i€
+(T —€)
_ X-(@-¢)Rez
—X — l€

We can convince ourselves also mathematically that this equation holds:
et ™€) = F(cos(m + €) tisin(mw + €)) = ¥(—cose Fisine) = #(—1 F i€) = —% F iXe,
where we can replace the infinitesimal quantity Xe again by €. Thus,

ti(m—-e) —

In(—% + ie) = InXe In¥+i(mr—e)=Inx+in or ImIn(—% + ie) = +m.

The result is the same as the one we wrote above for In(—%), but now it is well defined, as the choice
whether to take plus or minus on the right-hand side is not arbitrary but determined through the left-
hand side.

14.2.4 Calculating the Imaginary Part of the Electron Loop
For any fixed g2 > 4m?, the inequality condition for I1(g?) having an imaginary part,

m? < x(1—x)q?,
holds for
x(1—x) >m?/q?
= x2—x+m?/q*<0.

Replacing < by = we can evaluate the borders of the x-region, where this inequality is fulfilled:

B, B=+1-4m?/q>

Now the inequality is fulfilled either outside of those borders or in between, that is either for x < x_
and x > x, or for x_ < x < x,. The centre of the region x_ < x < x, is x = 1/2, so let’s plug this
value into the inequality:

2 mz
x“=x+—5=0 = Xy =
q +

N =
N =

+

2

1 (1 1) S m
2 2 q%
=1/4

Since we only considered values g2 > 4m?, the right-hand side is indeed smaller that 1/4 and the
inequality holds. Thus, for g2 > 4m?, only the region between x_ and x, of the integral within

H,(ez) (g%) makes up for an imaginary part.
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Using ImIn(—X + ie) = +m (our —X is the large fraction, which therefore luckily completely
disappears when calculating the imaginary part) and the substitution z := x — 1/2, we can evaluate!

m2

m2 —x(1—-x)(q? % ie)

2 1
Im (Hg)(qz + ie)) = —ﬂlmf dx x(1—x)In

m2

—x(1—x)q* Fie

2
= aof dxx(l—x)lmln

1.1

2 2 2 >+58

aof dxx(l—x)lmln( > m 2iie>=—ﬂ(in)f2 ? dx x(1—x)
—x(1—-x)q m 11,

- Jﬁ/z p (1 N )(1 ) =2 [1 1 3] $a03 (1 1 2)
Qg zl=+z||lz—z)=F2ay|-2z—=z2 =+— - =
-2 \2 2 4 3 1 g 2 3

3 a " 4m? 1_|_2mz
73 q? q? )

Due to the Cutkosky cutting rules, this imaginary part gives the total amplitude for pair production

2im ~n(Don = [t [n( |

Indeed (and without proof), it even gives the correct energy dependence of the total cross section for

the more relevant diagram
] 2
2Im >f@/\< =fd¢2 >¢\C|
1

Let’s see what this energy dependence explicitly looks like. Note, that the fermion loop can - in
principle - be made up of any fermion (that is, electron, muon or tau). Let’s say, we are interested into
the electron-muon scattering e*e™ — u* ™. Then we just need to take the loop fermion to be a muon
and replace m by the muon mass m,,. According to the optical theorem formula for forward scattering

from section 12.1, the right-hand side of this picture reads in the centre of mass frame 4|p|E_,0ot-
Thus, the picture can be written es

2Im Héz)(qz +ie) ~ 4|ﬁ|EcmO-tot'

where we have a proportionality instead of an equality, since l'[fez) does not contain the incoming
electrons (that they just give a proportionality factor is true, but not proven here). Thus, we have

a 4m?2 2m?
ImN$ (2 +i€) = Foe— |1 - ”<1+ ”).

1
Owot ~ 1315 S
O 2|BlEem 6|1 Ecm q? q?

Using |p| = VE? + m? = E = E,/2 (we neglect the electron mass m <« my,) as well as q* = EZ,, we
find

1We also used
a a

bTie b1+ 6) b

Ta+ie)=2+ié
16)—3_ i€

and finally set € - € as usual.
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1 4m2 2m?
o (ete” s putu) ~ 52 1- Ez”(l + E2u>'
cm cm cm

14.3 Momentum-Dependent Effective Charge

14.3.1 Relativistic Limit

Taking the formula for ngz) (g®) (the order-a contribution of 1z (g?)) from section 13.5 and expanding
the argument of the logarithm for —m?/q? « 1yields, using x/(x + a) = x/a + 0(x?),

H(2)=—2—ajldxx(1—x)ln m?
R T J, —x(1 —x)q? + m?
—m2/q?

_ 2, (1-21
- T[fo xx x nx(l—x)—mz/qz

Zafld (-1 m? 1
T oor o XX x5 —q%x(1—x)

2 1 _ A2
:_cxf dxx(l—x)(ln—q2+lnx(1—x)>
T J, m

2a —q? (! 1
=— ln—zf dxx(l—x)+f dxx(1—x) Inx(1—x)
n m= Jo 0
=1/6 =—5/18
_af, —-q*> 5
a ﬁ( HW_§>
a —q?
= glnm—zes/y

Thus, the g2-dependence coupling constant reads

Growing momentum —g? means smaller distances means larger coupling constant and hence larger
charge.

14.4 Corrections to the Coulomb Potential

14.4.1 Non-Relativistic Limit yields Coulomb Potential
Consider electron-positron scattering, where g = p’ — p is the difference between the outgoing and
incoming electron momenta.

In the non-relativistic limit, we can write E = /p2 + m? ~ m, such that E’ =~ E and thus

=@ -p)?=(E-E?-1p'-pI>~-Ip' - BI* = 14|
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Now take a look at the interaction part of this diagram; by “interaction part”, we mean the photon
propagator as well as the two vertices (g = e):
; 2
—in,, e
ey ~ iyty, —— R “y, V(@)

iey#
Let’s compute the Fourier transformation of V(g) (we use the abbreviation q := |G| here):

- e? o 1 1 .
Vo(#) = fd3q V(g eld" = fd3q—e a7 = —(2—3(27T)f q? dqj dcose—ze“"cose
) 0 -1 q

e’ fmd 1 ( iqr —Lqr) e’ —e?
=—— —(e'" —e =——=—
2m)? J, 17 iqr 4mtr 4|7

=n/q

That’s just the Coulomb potential!

14.4.2 Contribution to the Lamb Shift
Using the effective charge e.4(q?) instead of e, the corrected Coulomb potential reads

2 2
S _e&(q®) 1 g
V(T')=fd3 € - zqr_Jd3 etdr
LT TGP T-m (D"
At
= fd%-,_lqlz (1+ 1P + 0(a?) i@

4na o
= Vo () +fd3q_|§|2 (nﬁf)(qZ))eW + 0(ad).

Expanding H,(.‘,Z)(qz) = Hg)(—lﬁlz) from section 13.5 in the limit |G| « m, using In(1 + ax)™! =
—In(1 + ax) = —ax:

n®(-132) Z“f} (1= !
—_ e — —_ n
Rl X T e X — 0 1§12/m?
2a 201 N2 a |Gl?
<2 [t - 21t e = I

=1/30
Thus, the Coulomb potential becomes
dra [ a |G|?
|2 157 m?
— U () _ 3= ,ig-F 3
Vo(¥) 15m2fd ge'" +0(a?)

2
= Vo) ~ 25 5) + 0.

V(@) = Vo(r)+fd3_ ) a7 4 o(ad)

14.4.3 Rewriting the Potential in a More General Case
If we do not want to only consider the limit |G| < m as in(>14.4.2), it is useful to rewrite the Fourier
expansion of the Potential in the following way (we use in this case q = |q]|):

wa=fqumaﬁ

o 1

— 2 iqr cos @

= q°dqV(q) f dcos 6 e
(ZH)Zf0 -1

fmquvm>

iqr _ e —iqr

1
- (2m)?

iqr
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= _—iqu dq V(q)e' — fooq dq V(q) e‘i"’>
2m)2r\J, o

- —(Zn)lzr (f qdqV(ge'd + f qdqV(q) eiqr)
0 —0o

o8]

—i .

= W.f qdqV(q)e'r"

ix q el 1

J—— dq 2 2 2y
q? +v?1—TIg(—q?)

nrJ_q

Since g2 = 0 now lies within our integration region [—oo, o], we use a photon mass v? to regulate the
integral.

14.4.4 Solving the Integral using Residues Theorem

We want to compute this integral using the residue’s theorem. In the complex plane, the integrand is
one pole at g = +iv. But also IIy(—|G|?) is not defined for q? > 4m? (with q being again a four-
momentum), as we saw in section 14.2. In our non-relativistic limit means, g > 4m? means (with g
being a four-momentum)

q* = —|q|* > 4m? = Im|G| > +2m

(except for those two equations, we will use g := |G| henceforth). Thus, the upper-half complex plane
of g = |q| features one pole at iv and one branch cut on the imaginary axis, starting at g = 2im.

Y1

In this sketch, we already draw a closed contour. We call the whole closed contour y. The part along
the reals axis is called y;. We have also two infinitely large quarter-circles, which we do not label by
some special y;, since they vanish anyway. And then, the contour needs to take a little detour y,, since
the integrand is not defined at ico: It needs to avoid the branch cut by going down on the right-hand
side of the branch cut and then up again on the left-hand side (y, describes both paths along the
branch cut: down and up). Hence, since we assume that the quarter circles vanish, we can write

f:f +f=2m'resiv = fz—f+2m’resiv.
Y Y- Y2 Y1 Y2

The integral along y,, i. e. the real axis, is just (the integral in) V(#). Thus, one contribution to V (¥)
comes from the residue and one from the detour at the branch cut.

1

14.4.5 Calculating the Residue (yielding the Coulomb Potential)
First, let’s compute the residue. Note, that the denominator of the integrand

ia qelr 1
nrq? +v21 —Iz(—q?)

fl@) =

can be written as g% + v = (q + iv)(q — iv). Thus, it has two poles, but only one of them lies within
y and we find, using the footnote on page 26,

2niresiv = 2mi(q — iv) £(@)|g=iv
ia q el ( v) 1
S
TR,

et g — )
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20 q el” 1

r q+ivl—Tg(—q?) q=iv

2a iv el 1

T (w+ )1 - i(—()?)
a 1

— __e—vr—
T 1—-Tz(w?)

= —Z=v®

= - = Vo(7),

where we took the limit v — 0 in the last step and used I1z(0) = 0 from section 13.5. Thus, the residue
just gives the Coulomb potential.

14.4.6 Calculating the Branch Cut Contribution (yielding Correction to the Coulomb Potential)

Now to the branch cut: This branch cut is due to the fact that the logarithm in H}(?Z) is negative along
the imaginary g-axis for Imq > 2m.t Thus, our contour y, moves along q = i§ + € for § > 2m, along
which the logarithm takes on the form

2 2 2

I - =1 - =1 -
Nonz +x(1—x)q% Nonz +x(1-x)(iG+e)? Nonz —x(1—-x)G% tie
m? _ m? _
=ln(m2 —x(l—x)qz-l_w) :lnx(l—x)qz—m2+ln'

In the last step we used the formula that we found in section 14.2.

The real part is continuous at the cut; its value is basically on both sides the same. Thus, from the real
part point of view, the path y, goes down and then the same way up again, but in the other direction.

Hence, the down path and the up path just cancel each other. The real part of l'[}(zz)(vz) will not
contribute to the y, path integral, hence also the real part of 1 + H,(QZ) will not contribute.

Not so the imaginary part: It is discontinuous on both sides of the cut. Let's abbreviate everything in
the integral but 1 + I, by f(g) and evaluate the path integral along y;:

__i_a q eiqr 1
Jyz'_ r fyz 4q g% +v21—Tg(—q?)

- [ dar@ (141 (-g% +0@)
Y2

= f Jdaf@ (141 =g9) + j A f@ (117 (=g9) +0(@)
Y2 Y2

=i f dq f(q) Im T (—q?) +i f dq f(q) ImN$Y (=) + 0(a®),

vl y2T

where, in the last step, we used our observation that the real parts of the down and up path cancel. We
now parameterize the paths using ¢ = i§ + €,§ € [2m, =], using —q? = §* F ie (with some new but
still infinitesimal €; note, that we can immediately set € = 0 in f(q))

(o8]

2m
f = if idg £(iq) ImnP (g2 — ie) + if idg £ (ig) ImN2 (g2 + i€) + 0(a®).
Y2 co 2

m

1 For q = 2im, we have (for q := ||, the two terms in the denominator are added up, not subtracted!)

mz q=2im 1
In = In———.
m? + x(1 — x)q? 1—-4x(1-x)

Since x(1 — x) is at most 1/4, it is obvious, that the argument of the logarithm becomes negative for Im q >
2m on the imaginary axis.
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We know from section (>14.2.4), that

@, 5 -4 4m? 2m? ey
ImH (q +l€) § 1—? 1+? =:+f](q )

Thus,
J

2

2m co [e9)
= if idq f(ig) 3(g*) - if idg fig) 3@ +0@®) =2 dgfig 3@ +0@a?).
3] 2m 2m

Plugging in

ia ig et 5 q eI

faq) =

~ )

ar(if)2+v2 @ §

we end up with

wm:[:ammum—f=%@y-%- 72) + 0(a?).

Y1 Y2 2m

14.4.7 The Uehling Potential
Let us compute the order-a? correction to the Coulomb potential, that is 8V () in

V(@) = Vo) + V() + 0(a®),

where
za o] —qr
V(i) =—- — 2)
r Jym
2a% (@ p e ar ) 4m? (1 N 2m2)
R q —_ )
3nr Jom q q* q°

in the limit r > 1/m. In this limit, the integral is dominated by the region where g = 2m. Let’s first
substitute § = g — 2m,

(W(r)___ U om P Grzmz\1 T Grzme

2a2 [® e—(@+zm)r 4m2 21?2
3nr ’

and now we can approximate for small §:

L _ 0@ - o, 1+ 3 ho@.
g+2m 2m 1 (G+2m)?2  |m v (G+2m)z 2 1

This yields,

26(2 © _ e—(c7+2m)r q3
V@A ~=30) W —n— [m2

2mr
2nm3/2rf q e Qr\/—

=G

—-2mr

a ae

T ammr)?/?
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15 FUNCTIONAL INTEGRALS

15.1 Functional Integrals in Quantum Mechanics

15.1.1 Motivation of the Functional Integral Formula

In quantum mechanics, there is a superposition principle: When a process can take place in more than
one way, its total amplitude is the coherent sum of the amplitude for each way. In the example of the
double-slit experiment, the amplitude of the electron arriving at the screen at one certain position is
the sum of the amplitude for the two possible paths through the two possible slits.

None of all the possible paths should be inherently more important than the other; that is, all of them
should be included into the calculation with the same weight. Or in other words: All paths are equally
probable. The path through the left slit is no more probable than the path through the right slit. That
is, the absolute squared of the amplitudes of the different paths are equal. However, the paths differ
in phase and when we add up the two possible paths, we might get interference. Therefore, we write
each path only as a phase ¢:

U(xg,xp,T) = eidlx(®)] —. fDx(t) e lBlx(O]
all paths x(t)

Of course, only paths x(t) which start at x, and end at x,, are considered. Depending on the path the
electron takes, it has a phase ¢[x(t)] in the end. Thus, the phase is a value assigned to a path; that is,
¢[x(t)]is a functional. And since paths are in general not discrete but continuous, we write an integral
[ Dx(t) instead of a sum over “all paths”.

A functional can also be differentiated with respect to is argument (a function) and we will write this
functional derivative as 8¢ [x(t)]/8x(t).

The remaining question is, how the phase ¢[x(t)] looks like. In the classical limit, the electron should
take only a single path x4(t). That s, in that limit, only this path contributes to the amplitude. All other
paths need to cancel in the sum/integral above. By the principle of the stationary phase, we conclude
that the only phase, which is not cancelled, is the one which does not change is the one that obeys
8p[x(t)]/6x(t) = 0. Hence, the classical path x4(t) obeys

8¢[x(t)]

5x(0) =0

xcl(t)

There is also the principle of the least action, that tells us, that the classical path satisfies

8S[x(1)]

6x(t) =0

xcl(t)

where S = [ dt L is the classical action. Therefore, it seems reasonable to take ¢p ~ S. Obviously, the
phase in dimensionless. Thus, we should add a factor of dimension action™!. What else could it be than
the quantum of action #? Thus, in SI units we write ¢ = S/# and in natural units simply ¢ = S.

15.1.2 Verification of the Functional Integral Formula for the Double-Slit Experiment

Let’s verify that we can take the phase proportional to the action for the example of the double-slit
experiment. Consider the detector to be at a position such that the path from one slit to the detector
haslength D and the other path is about d longer, thatis it has length D + d. Let’s assume that we send
out a single electron to the double-slit at receive it after a time t in the detector. The action for the first
and second path then is
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m
S, = ?vft, with v, = D/t,

m
S, = Evzzt, with v, = (D +d)/t.

Assuming d « D and plugging in the velocities, we find

_mD2 _m(D+d)2 mD? + 2Dd

S___I
172 ¢ 272 t 2 t

The excess phase of the second path is obviously

N _AS_de_2 pd_2 d
L R N R Y
~p

That is, for d = nA we find e?*? = 1 and thus constructive interference, as we would expect.

15.1.3 Derivation of the Functional Integral Formula
We now want to proof the equality

U(xg, x,T) = (xb|e—iHT|xa> = Jpx(t) eiSlx(@®]

more rigorously. U(x,, x;,, T) describes the amplitude of a particle travelling from x, to x;, in time T.
We will show the equality by discretization: We break up the time T into N intervals of duration € and
finally perform the limit N - o0, — 0. In each interval of duration €, we will approximate the path
x(t) as a straight line.

The action integral for the discretized path x(t) can be given as a sum over all the time intervals:

N-1
T T m m ,x .2 X 4y
5=f dtL=f dt (—x2+V(x)>=ze _(_"+1 n) _V( n+1 n) .
0 0 2 = 2 € 2

The time slices are referenced by an index n. We use x, := x, and xp = xj,. Since € is the length of an
infinitesimal time interval, we can use dt = € as well as x = (x,,.; — x,,)/€ (thatis just the slope of the
straight path within the n-th interval). For the argument of the potential I/, we just use the average
position (x,, 41 + x,,)/2 within the given time interval.

X1 /\ s
X5 XN = Xp

t

0 e 2e T

So far, we only considered the action. However, the action needs to be plugged into a functional
integral. We define the functional integral to be integrals over the positions x;, x5, ..., Xy_1. As these
positions are always connected by straight lines, the tuple (x4, x5, ..., xy_1) will - together with the
fixed startand end points x, = x,, xy = x;, — define a path entirely. As it turns out later, we also should

include some e-dependent constant a; ! for each of the N intervals:
1 (®dx;dx, dxy_q
Dx = — —_——

a6 —00 aE aE aE

With this expression, we can write
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N-1

1 dx,dx, dx m (x )2 ot 4 x
U(xo,xN,T)za—f 1 2... N= 11_[exp< (n+16 n) —ieV( n+12 n))

€ d n=0
—f Dx — oSO
© dxy_ m(xy —x Xy + Xy_
= f N1 exp (l?% ieV (%)) U(xg,xy_1,T — €).
—00 €

In the last step, we put all integrals except for the dx,_;-integral and all factors of the large product
except the one of the last time interval into U(xg, xy_1, T — €).

In the limit € = 0 the first term of the exponent oscillates very rapidly and x, must be very close to
Xy_4 to not be cancelled out by this oscillation xy_; = xy. Thus, we only get x, in the argument of the
potential and we write x instead of x,_; as the second argument of the U beneath the integral:

€

© dxy_ .m ,
U(xo, xy, T) = f a” Lexp (zz(x,v —xy_1)? - leV(xN)> U(xo,Xy-1,T — €).

And we can also expand the amplitude U(xg, xy_;, T — €) =: U(xy_1). We take it as a function of xy_;
and Taylor expand it at xy_; = xy:

2

- 1 0 -
U(xN—1)| (xy-1—xy) + 55— Uxy-1)
X 20x5_4

N

(xn-1 —xn)% + -

. - a
U(xy-1) = Ulxy) + £
N-1 .

1 | 02 _
1+ (xy- 1—xzv)a N+E(x1v—1—x1v) ﬁ-{_ U(xy).
N

If we also expand exp(—ieV) ~ 1 — ieV + 0(e?), we find

@ dxy_ m
U(xg,xy,T) = f aN ! exp (iz_e(xN - xN_l)Z) (1—ieV+-)

€
2

Ja 1
* <1+ (.xN_l )a + (xN 1_xN) + >U(X0,xN,T—6).

XN ax%

If we shift the integration variable xy_; = xy_; + x5 =: §, the integrals dxy_; are now nothing else
but Gaussian integrals?

fdfe_afz :\E' fdff"’_afz =0, fdffz ~ag? _ 21a T

Thus, we find

1 Well, not quite. Gaussian integrals usually have real parameters a, where as in our case, a is purely

imaginary. Actually,
f3
dé e 98" = /—,
f fe a

does hold also for complex a, as long as Rea > 0 (we won’t proof this mathematical statement). Thus, we

can write
. o . T —im
d e—Lbf2 — fd e—L(b—Le)EZ — fd e—(Lb+e)E2 — — :
f § § § \Jib +e€ b —ie

the limit € —» 0 of which gives the integral for a purely imaginary a = ib. If b is never zero, we can obviously
simply set € = 0. However, it will happen that b is something like p? — m? and then we need the i, since
p? — m? can be zero.
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U(xO) XNy T)
2

® dg m , 9 1,0
—f_wa—eexp(—ﬁf )(1—lEV+)<1+fm+Ef m+"'>U(xo,xN,T—E)

_1(1 e 4 ) 2mie 1+12i«s 62+ uC T—o
" a, e m 22mox}3 XorXw: €
S L ey i 2 06 Ut T - 6)
Cac m T om ox; ¢ Yo X £ €

In the limit € = 0, only the bracket becomes 1 and the latter U equal to the U on the left-hand side.
Thus, for the equation to hold in this limit, we need

2mie
a, = |[—.
€ m

Plugging in this expression for a. and rearranging the equation a little bit, we find that we can give it
in the form

U(xg, x5, T) — U(xg, x5, T — € 1 092

UCxo,x, T) = Uko, 2y ):< )U(xO,xN’T_E)

.
€ 2mox3

2

_ﬁa_x; + V> U(xa,xb,T) = HU(Xa,Xb,T).

.0
= la_TU(xasz:T) = (
What we have now proofed, is that U(x,, x,, T) = [ Dx(t) e®S1*®)] obeys the Schrodinger equation.
And so does U(x,, x3,, T) = (xb |e‘iHT|xa), as it is very easy to see:

0 . .
U(xq xp,T) = iﬁ(xb|e“’”|xa) = H(xp|e®T|x,) = HU(xq, xp, T).

‘ar
Does the fact that [ Dx(t) e**®)] and (x, |e~#7|x,) obey the Schrodinger equation mean that they
are equal (as was our aim to show)? It almost does. If they both obey the same differential equation
and the same initial condition, then they must be equal. Let’s check the initial conditions. For T — 0,

we find
. T-0
(xble_lHTlxa> - (xblxa) = 6(xb - xa)-

When it comes to [ Dx(t) e’S*®] we can approximate it in the limit 7 — 0 by a single time interval
with a straight line from x, to x,:

. N m m (x, — x,)?

2mie 2

Note, that the prefactor is just 1/a,, one of which we introduced for each time interval. We want this
expression to be a §-function §(x;, — x,), thus we must examine its behaviour underneath an integral
together with a test function:

[m mux?
fdxf(x) ﬁexp<13?).

As € — 0, the exponential function oscillates infinitely fast under the variation of x. That is, even if we
vary x but an amount §x so small, that f is virtually constant in this region, f(x + §x) = f(x), the
exponential function will have oscillated a lot in this region cancelling out any contribution to the
integral. Only for x = 0, there is no oscillation no matter how small € is. Therefore, only x =0
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contributes and the integral is proportional to §(x). We will not proof that the proportionality factor
is indeed 1.

15.1.4 Functional Integral Formula for a General Hamiltonian

Let us now consider a quantum system described by an arbitrary set of coordinates q* and conjugate
momenta p' (the standard-case would be i = x,y,z), such that § = (g%, ¢? ..). The transition
amplitude now reads

U(Eiar (_ib: T) = (C_I)b |e_iHT|EI)a>-

As in (>15.1.3) we break up the time interval T into N time intervals of duration ¢, such that e
(e )N If we then plug in a complete set of states

—iHT _

1= [ (mdq") g
between each of those factors, we find
U(Go, Gn, T) = f(l'[il'[ﬁ’z‘lldq,ﬁ) (‘7N|e_iHe|‘7N—1>(‘iN—1|e_iH€|‘7N—2) "'(‘71|e_iH6|‘70)
N-1
= [ (=g [ J(msle I
m=0

where we used g, := q,, gy = {p. Let's assume the Hamiltonian is a sum of terms depending on the
coordinates and the momenta respectively: H(g,p) = f(§) + f(p). Pick one of the many matrix
elements, expand in € and plug in this form of the Hamiltonian:

(6n+1|e_iHE|6n> = (‘-jn+1|1 - iH((-j,ﬁ)E + - |qn> = (q)n+1|1 - Lf((_]))G - lf(ﬁ)f + |q)n)

A matrix element with f(q) can be written as

d i
<C_in+1|f(‘_j)|5in> = f(c_in) 6(El)n+1 - Ein) = f(c_l)n+1,n) f <Hi%> exp(iﬁn(ﬁrwl - Ein))

In the second step we used the presence of the §-function to turn G, into G414 = (Gns1 + G»)/2 in
the argument of f and then wrote the §-function as an integral, using §(x) = [ dp/2m e™P* (see also
the footnote on page 21).

When it comes to the matrix element with (), we can introduce a complete set of momentum states
and write

(Gnealf PN Gn) = f(Hidprl}) {Gnaalf @B )(Pnldn) = f(Hidpﬁ) f B {Gn+1|PnXPrldn)

dph\ . . S é
= f (m%) f @) exp(iBn (Gns1 — Gn))-

Finally, also the term (g, +111|g,) from the expansion of the Hamiltonian can be written similarly (just
plugin f(p) = 1) in the derivation above) and we find

Y il dp}, s s e )
(Gn+1]e ™| Gn) =f<ﬂi2—;> (1= if (Gnr1n)e — if B)e + ) exp(iBn(Gns1 — Gn))

dp} é " . >
= f (Hi %) exp (—ieH (Gns1n Pn) ) €XP(iBn (@nsr — Gn))-

Plugging this result into U gives
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U(qO: an, T) - I(H H dqn) 1_[ f ( d T:' )exp (_iEH((_jm+1,m: ﬁm)) eXp(iﬁm(‘_im+1 - Eim))

; N-1 R e
-/ (n (My=td n)( i odz”;»exp (i > {%M—H@mmﬁm)))
m=0
- [pi@viwes (i a(pi-nan))
0

In the last step we took the limit € = 0 and changed the discrete to a continuous form. Note, that the
coordinate integral D only includes N — 1 integrals dq}, fromn = 1ton = N — 1, as the initial and
the final coordinates a fixed by g, = g, and gy = §,. However, the momentum integral Dp contains N
integrals dp’, fromn = 0 ton = N — 1, since the initial and final momenta are not fixed. Note, that the
integrand does not contain a momentum py, which is why there is also no such integration. Obviously,
we have defined

L dph,

DG = I;NIN-1dqL, Dp = HHmOZ

15.1.5 Non-Relativistic Limit of the General Formula

Let us now examine, if we can extract the non-relativistic limit from this general functional integral
formula. In this (one dimensional) case, the Hamiltonian is simply H = p2/2m + V(q). If we plug this
into the discretized functional integral formula (see the end of (>15.1.4)), it reads

U(Go, Gn, T)

N-1
Ldp . Im+1—dm  Dr
j((ﬂr"l’ %dqn)( Ny zm)>e><p (lz E<pmw_ﬁ_V(Qm+l,m) :

m=0

Recall, that ¢ 41m = (@m+1 + Gm)/2. We can now explicitly evaluate one of the momentum integrals
by completing the square:

JdﬁeXp iPm(Gm+1 — q )—ie%
27_[ m m+1 m Zm

2
dp _ 1 12m
fz—;nEXI)(—l( 6/2mpm_§V2m/6(qm+1_Qm)) +lZT(Qm+1 _qm)2>

2

P
eXp( 7= (1 = qm)? f —eXp<—le -

2m
_ alexp (l.e?(Qm+1E_ Qm) )'

€

2mm

m 1
= exp(i5=(Gm+1 — Gm)?)5= |[—
2€ 2T

13

where we used the Gaussian integral and a. = +/2mie/m, both given in (>15.1.3). Since we have N
integrals dp,, (fromm = 0 tom = N — 1), we can N factors az 1. If we plug this back into U(g, Gy, T),
we arrive at precisely the same expression that we had quite in the beginning of (>15.1.3):

N-1
U(do 4n,T) = f (321 dp) eXp< Z 6(% (M)2 - V(qm+1,m)>>

m=0
N-1

_1 dq m(q am)? .
(H”.l n)l_[exp ( %—leV(qmﬂm) )

=0

=/ Dx
I =e iS[x(0)]
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15.2 Quantization of Scalar Fields

15.2.1 Matrix Element in Terms of the Lagrangian Density
In section 3.1 we introduced the Lagrangian density

1 2
L=50") -V V(®) =07,

as the one whose Euler-Lagrange equation is the Klein-Gordon equation. We then found in section 3.3
that from this Lagrangian density the following Hamiltonian follows:

H= fd3x7-[ = fd3x (%HZ +%(V¢)2 + V(¢)),

where we used the conjugate momentum I1 = d£/d¢ = ¢. I is by definition the Hamiltonian density.
Thus, our functional integral formula from section 15.1 becomes in the case of field theory

T
(6 D]e7]9y () = [ Do DRy (i [t (g - }f))
0
f (T .1 1
= | D¢ DIl exp (lf d*x (qu - EHZ - E(V¢)2 - V(¢))),
0

where the D¢ integral covers all possible fields, which obey ¢(%,0) = ¢,(¥) and ¢p(X,T) = ¢, (¥). If
we complete the square with respect to II, we can evaluate the DII integral, such that

i N (T 1 2 1.1
(dp (D]~ (%)) = j quDHexp(l f d*x <—§(n—¢) +5¢2—5(\7¢)2—V(¢)))
0

T
~ fqu exp (zfo d*x (%432 —%(vq))z - V(¢)>>.

The result of the DII integration is some number, which we did not write explicitly here. We will from
now on absorb it into the measure D¢ (after the absorption, we can write an equal sign instead of the
proportionality sign). Using ¢ — (V¢)? = (0*¢)? we find

; T 1 T
Ve #7|p, (D) = | D | dtx (5 (0r9)2 -V =|D | d*x L),
(8o Dle™7|, ) = | ¢exp<1 | x<2( ®) (¢>))> | ¢>exp(z | x)

15.2.2 2-Point Function in Terms of Functional Integrals
We will proof this formula for n-point now for the case n = 2:

J Do d(x1)p(xz) exp(i [ d*x L)
[ D¢ exp(i [ d*x L) '
Let’s start with the numerator of the right-hand side. It contains a functional integral covering all

possible fields ¢ (x) (they should all be fixed at t = —oo and t = o). We can break up the path integral
as follows:

QT ¢y (x)Ppu(x)|Q) =

f D f(¢) = f D, Db, f D 8[(%x?) — 1 (D] 8[d(E 1) — 2 (D] F($).

That is to say, we constrain the fields of the D¢ integral in such a way, that they must equal ¢, (¥) at
the time x{ and they must equal ¢,(¥) at the time xJ. Then we integrate over all the possible
constraints ¢, (¥) and ¢, (%), such that the right-hand side just equals the general integral D¢ over all
possible fields ¢ without any constraints.

Since those “§-functions” ensure that it is true, we can write ¢(x;) = ¢p(¥;, x)) = ¢, (%,) and similarly
¢(x;) = ¢,(X,) and therefore take them out of the D¢ integral:
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| 8 peptens (i [ avxr)
= [ D, D4 1) 923
| D6 819G 20 ~ 611 8163 ~ 2] exp (i [ a¥x 2),

4

Recall that the integration D¢ includes fields with constraints ¢, and ¢, for t = +oc0. The “§-functions’
impose two additional constraints: ¢; att = x and ¢, at t = xJ.

To understand how we can use those constraints, let’s consider an analogous one-dimensional case.
Consider the functional integral

j Df el %A@ 5[£(x,) — ] 81f () - fo]

= [ Df el AU Ihy ATl AU g1, — £] 61F ) — £,
where 0 < x; < x, < 1. We also assume that the boundaries of the functional integral, f(—c0) and
f (0), are fixed. In the step we already made here, we simply split the integral in the exponential. We
obviously can always do this (so far, we could have also cut the integral at other places than x; and
X3).0ur x here plays the role of the time in our field theory calculation. We just don’t bother with other

(space) coordinate here. Since the regions do not overlap, and since we integrate over all possible
functions, we could just as well write

f‘Df DhDg o)t AT 27 dx ARG [ ax AlgGOl sy .

We just need a bunch of more “§-functions”, to ensure that, for example, f(x,) = f; or g(x;) = f5
(they are indicated by the dots). Obviously, those integrals factor out. Since now the “§-function” only

fix the boundaries of integration (namely x; is a boundary of f_x;o dx A[f (x)] or x, is a boundary of

fxoo dx A[g(x)], for example) and since functional integrals usually come with fixed boundaries write
2

fo efilodxA[f(x)]th ef;‘fdxA[h(x)]ng oy 42 ALg (O]

without “6-functions” and take the fixed values as the fixed boundaries (which we never explicitly
denoted in formulas of functional integrals).

In the same way, we get three distinct factors of functional integrals:

f D §er)pCcr) ex (1 f a*x r)
= [ D D, 8:Gi) o)
f D exp f a*x L[9)) f D' exp i f atx £[')) f D¢ exp i f atx £[9"1),
The D¢b integral has boundaries ¢, and ¢,, the D’ integral has boundaries ¢, and ¢, and the D"

integral has boundaries ¢, and ¢;. Using the formula derived in (>15.2.1), we can write them as
transition amplitudes

| D8 pexpeeens (i [ avxc)
= lim f Deps Dby b1 (1) (%) (e M2, ) (b e~ 122D |, )y [~ =T | ).
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We defined ¢;(%) == ¢(%,x?) to be an interaction picture field at some fixed time x?, thus ¢;(¥) is
obviously time-independent. We therefore can define a Schrodinger operator ¢5(X) by the property
Ps(X)|d1) = p1(%1)|¢1). That is, ¢g has nothing to do with ¢4, but is defined to act in the same way
on |¢,). This yields

[ 26 pGdCeyen (i [ atxz)

= Jim [ D1 D, (eI s )|l g |1 e~ CE g
= lim (¢p e~ s () e ~HOS 2D (2, ) ~H(=D)| s )
= Tli_{g(d)b le ™ HT ¢y (ox2) ppr (x1) e ™HT | pg)

where we used I = [ D¢, |¢p1){(p,|. We considered the case x{ < x3; for x3 < x2, the order would
simply be interchanged and we can use the time-ordering operator to denote the general case as

f‘D({b ¢(X1)¢(X2) exp (i f d*x L) = }i_r){)lo(({l’b'e_iHT T(¢H(x2)¢1-1(x1)) e—iHT|¢a)
= (Pal QT (b1 (x2) b1 (1)) [2) Qb

In the last step we used

lim =7 |,) = 1““2 T )l pa) = hmE 5T )l o)

= 10)Qpa) + lim > e ET[n)nlde) = 10XQIP),

nxQ

where the term with the sum vanishes because of the Riemann-Lebesgue lemma, see (>7.9.1). Also,
had to assume, that |¢,) has some overlap with |Q), such that (Q|¢,) # 0. Note that for a free theory,
we can assume that |[¢,) has some overlap with the free vacuum |0) and simply replace |Q) by |0).

The denominator of the formula we want to proof gives simply

[ Dexs(i [ atx) = tim (gl #TClg,) = (el 1) (@1g0)

=1

and the proofis complete:

I Dp $Cx1)p(x) exp(i [ d*x L) _ ($al QT (¢ (c2) b (1)) | 2N Sa)
/D exp(i [ d*x L) (Pal QN QD)
= <Q|T(¢H(x2)¢H(x1))|Q>-
Itis easily generalized to an arbitrary number of fields ¢ (x;) ¢ (x;) -+ ¢ (x,,): One just needs introduce

and integrate over n constraint fields ¢4, ¢, ..., ¢, and cut the main integral n times, yieldingn + 1
factors of transition amplitudes.

15.2.3 Two Point Function with Generating Functional
Using the chain rule for the functional derivative, we find

_l-%z[]] = —i%fﬂ)gb exp (ifd“x (£ +1(x)¢>(x)))
= fi)d) ¢ (2) exp (ifd4x (£ +](x)¢(x)))-

Thus,
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(7))
= %f D p(x1)P(x3) exp (i f d*x (£ +](x)¢(x)))

_ fD(Ib ¢ (x1)Pp(x;) exp(i f d*x L)
B [ D exp(i [ d*x L)

J=0

= (0179 (x1)p(x2)[0).

15.2.4 Generating Functional of the Free Klein-Gordon Field
In free Klein-Gordon theory, the Lagrangian reads £, = (0#¢)?/2 — m2¢? /2. Integration by parts
yields for the exponent of the generating functional

([atx o +ig) = 1 [ a5 (5 (@) (08) - m267) +19)
= ifd“x G (—¢pO¢ — m?¢?) +]¢) = —in‘*x (%(,b(l] +m? —ie)¢p —]¢).

The functional integral D¢ over the exponential function with this exponent is basically a Gaussian
integral (due to the structure! ¢pA¢p + b¢). Since it is purely imaginary for real fields ¢, we had to
include an —ie in the ¢2-term to ensure convergence (see also footnote on page 129). We can
complete the square by introducing the substitution

b=+ f d*y iDp(x — ) JO),

=:]

such that ¢’ is our new integration variable for the functional integral (obviously, D¢ = D¢'). When
plugin ¢ = ¢’ + I and abbreviate G := [0 + m? — ie we find

1
ifd“x (Lo +)¢) = —ifd‘*x (5(4)' + DG +1) —1(¢'+1)>
= —ifd‘*x <%(¢’G¢’ +¢'GI +1Gop" + IGI) — J(¢' +1)).

We can now make use of the fact that i Dy is the Greens function of the Klein-Gordon operator G, that
is GiDp(x —y) = §(x — v), as we found in section 4.8. Also, since it contains two derivatives (I = 92,

1In analogy, for a matrix A € R™"™ we have
n—n
f(nifi) exp(—§4;¢;) = ot '
the derivation of which is based on Gaussian integrals: We can substitute ¢; = 0;;x; where O;; is the
orthogonal matrix of eigenvectors of 4, such that

f(“ifi) exp(—§4;¢) = f(nixi) exp(—x, 0}, Ai;05%;) = f(nixi) exp(—Zy X Ay Sx1x;)

O | [ Ly —
=f(l'[ixi) exp(—a;x;) —U\/‘;_m_ detA4’

a; are the Eigenvalues of A. The Jacobi matrix is in this case the orthogonal O, thus the Jacobi determinant
is 1.

Obviously, this holds for all matrices, whose eigenvalues have a non-vanishing positive real part (see
footnote on page 129). In the case that 4 has purely real (and positive) eigenvalues, the integral with an
additional i in the exponent will give, adding an infinitesimal i€ (see, again, footnote on page 129),

I(Hifi) exp(—i§id;;§;) = f(nifi) exp(—i§i(Ayj — i€)§;) = - = 1_[ /ai_—mie = dit_:? e
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we can always integrate by parts twice to transfer G to act on the left-hand function underneath an
integral. So let’s evaluate the terms individually:

¢'Gl = $'(x)G f d*y iDp(x =) J(¥) = ¢'(x) f d*y 6(x = y) J() = ¢' ()] (),

16¢' = f d*y iDp(x — ) J()GP' (x) = f d*y GiDp(x — ) J(y) ¢' (%)
- f dy 8(x—) () ' () = JW' () = /G,

161 = [ @y iDp(e =) JOIG [ dy' iDpGxe =y 1)
= [ @ty et =3 J) [ @ty 56e=y) I = [ @y e =) 0D =1
Thus, we arrive at
i.[ d*x (Lo +]P) = —in‘*x (% (p'Gp" +2¢'J+]D) —JP' —]I)
=i [ atx (3060~ 31) = =t [ a*x (2060 -5 [ @'y 1) Dpx= 1) J)),

In the functional integral, we can simply change D¢ — D¢’, as the Jacobian of a simply shift is 1. Thus,
the generating functional of the free Klein-Gordon theory reads

Z[]] = fqu exp (ifd“x (£, +](x)¢(x)))
= [ D9 exp (i [ atx (20 —3 [ ¢ty 1) iDrG =) )))
= [ D9t exp(~i [ ax 206" exp (3 [ ax a*y 1) 1Dr e - ) 1)),

=Z[0]

Note, that the second exponential function is independent of ¢p’ and can therefore be pulled out of the
D¢'-integral.

15.2.5 Evaluating 2-Point Function with Functional Integrals
We already know from section 4.8 that for the real scalar field (which is Hermitian, ¢t = ¢) we have

l e_lp (xl Xz)

(01T $(r1)(x2)10) = Dy — x) = f s

—m2 +ie

We now want to find this result using the functional integral formulation. Using our result of (>15.2.3)
and the explicit form of the generating function for the free Klein-Gordon field from (>15.2.4), we find

OIT ()9 e)I0) = (i 5]f ) (-5 ) ]] )
= (- Wl))( 51(x2) x5 d‘*xd‘*y/(x)iDF(x—y)J(y)) B
= (mizes) s [ @ dv1@ 0= 010 ~
~ (~i50)5 ([ @y 0rea =900 + [ @210 0px = x) 5 [U]]]:O
= (- 5](x1)) [ axse iDF(x—xz)j[—[(l,]]

J=0
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Since Dr(x — y) = Dp(y — x), the two terms of the product rule are identical. Now, the derivative
6/6] (x,) acts via product rule on the J in the x-integral and also on Z[J]. However, the term where it
acts on Z[J] will vanish when J is set to zero. Thus, only the following term remains:

Z|J]

m = Dp(x1 — x3).

(OIT$ ) (x2)[0) = —i f d*x 8(x — x7) iDp(x — x3)
J=0

15.2.6 Evaluating 4-Point Function with Functional Integrals
For the calculation of the 4-point function, we will use the following abbreviations:

i = ¢(x;), Ji = J(xp), Jx =7 (x), Dy; = D(x — x;).

Also, integration over double indices x, y, z is implicit. Then we find

6 6 6 6 Z[]] 6 6 6 6 [
olT 0) = (=0)* ===l = (D s exp 5/ iD
(01T 162$39410) = (-0 57557 ol _, = O S 5,55, 50, (2]’” "y]y)|]=o
iii 1(D + JxDys) (—— D
S\ ayly + JxDxs) | exp (=5 xy]y) o
§ 6 6
R 612 57, "4)exp( 2 nyjy)|]=0
0

5]16] ( D3y + ]y x4]y y3)exp( 5 )x ny]y)‘jzo

1
= —5 77 (DaaxDxz + Dza]yDys + JxDxaDas = JxDxalyDyslzDzz) exp (—Efx Dy Jy )
1

= D34D15 + D34 D13 + D14Ds3.

J=0
All of the many more terms created by the derivative § /6], in the last step vanished as we set ] = 0.

15.3 Quantization of the Electromagnetic Field

15.3.1 The Problem of Gauge Invariance

Recall the formula from section 14.2, which connected the n-point function with a fraction of
functional integrals. The denominator of this fraction reads, if we exchange the scalar field ¢ by the
vector field 4,

[Daesp(i[ ax)

where DA := DA*DATDA?DA3 is the functional integral over all components of the vector field. As
known from section 3.6, the Lagrangian of the free electromagnetic field reads £ = —F,, F*¥ /4, where
F, = 8,4, — 0,A,. Using integration by parts at the third equal sign, we can write the exponent as

i
ifd4xL = ——fd‘*x (0,4, — 0,4,)(0*A — 0V AH)
=—= f d*x (B”A")(a A,) - (9,4,) (0" AV) f d*x (AVOA, — A,0,0*4")
= —ifd“x EA#(—n‘“’IZI + dVo* — ie)A,.
Note, that (n*¥O — d¥9*)A, = 0, F** and that we found d,F"* = 0 to be the free equations of

motions for the electromagnetic field in section 3.6. In the same way as for the real scalar field in
(>15.2.4), we introduced —ie to ensure convergence of the integral.
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When we did this calculation for the scalar field in (>15.2.4), we introduced a shift of the integration
variable of the functional integral (that is, the field) and the shift contained the Feynman propagator.
This was helpful due to the fact that the Feynman propagator is the Greens function of the Klein-
Gordon operator. By analogy, it would be helpful to shift the field A* by the Greens function of the
operator n*O — 3V a*, that is the function Dy (x — y) defined by

(—nMVD + 0,0, — ie)iﬁ}"’(x —y) =67 6(x —y).

Unfortunately, such an equation has no solution D¥? (x — y). To see this, we can consider the Fourier
transform of this equation,

(—nwk? + k,k, — i€)iDE° (k) = 6¢.

If we take n#Vk? — k*k" to be the 4 X 4 matrix and consider this equation to be a matrix equation, we
could find D¥? by multiplying the equation with the invers matrix of n*Vk? — k*k". However, the
determinant of the matrix n*Vk? — k#k” turns out to be zero, such that no invers matrix exists.

This difficulty is due to gauge invariance. F#¥ and thus £ is invariant under a general gauge
transformation of the form?!

A (x) = A, (x) + 9y a(x).

This gauge invariance yields that the functional integral is badly defined, since we redundantly
integrate over a continuous infinity of physically equivalent field configurations.

15.3.2 Faddeev-Popov Procedure

To avoid the problem just discussed in the end of (>15.3.1), we would like to isolate the interesting
part of the functional integral, which counts each physical configuration only once. Let G(A) = 0 be
our gauge condition; that is for the Lorentz gauge we choose the function G (4) to be G(4) = d,A*. We
want to include a “6-function” 6[G (4)] into our integral to restrain the functional integral to the gauge
G(A) = 0.To do so legally, we can introduce the following form of a 1:2

0G (A%
det 4%
oa

1= fl)a 6(6( , where Af = A, + 0.

For the Lorentz gauge, we have

0G (A% ) 1)
oa

(G”A“) ——(O“A +0e) =0

and det [ is a functional determinant (since operators are analogue to matrices, one can also define
determinants of them). For the present discussion, the definition of a functional determinant is
irrelevant. What is important, is that it is independent of 4, so we can pull it in front of the DA-integral.
Thus, plugging in the 1 in the form given above, we can write

fDA exp<ifd4xﬁ) =

6G(A*
det 4%

f DA Da §(G(A%)) exp <i f d*x L).

1 Let’s quickly check this statement:
FH = 0FAY — 0VA* - 0#(AY + 0Va) — 0V (A* + 0% a) = FM.
2 This identity is the analogue of
— %o)

[ ax o) 1g’ (x>|—fdx Pl = [ dxot—m) =1
or f d™x 6(g(x)) |det g’ ()] =J- d"x 6(%) =1,
Rn

g(R™)
where det ' (X) is the determinant of the matrix with elements dg;/0dx;.
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We now shift A - A — da, such that the A% in the “6-function” becomes simply A:

[oaesn(i [ atez)-

5G(A%) fDA Da 5(G(4)) exp (ifd‘*x L(A)).

6G(A%)

det
€ oa

D(A - da) Da §(G(A))exp|i | d*x L(A - da)
J (] )

det 5a

Since this is a pure shift, we had D(A — da) = DA and by gauge invariance we had L(4 — da) = L(A).
To move on, we need to choose a gauge fixing. We will choose the somewhat generalized Lorentz gauge
G(A) = 0*A,(x) — w(x)

with an arbitrary scalar function w. This gauge still has the functional determinant det §G(A%)/6a =
det:

fDA exp (ifd“xﬁ) = IdetEllfDA Da&(a”Au(x) —w(x)) exp (ifd‘*x L(A)).

w is arbitrary, so this equation holds for any w. Hence, we can replace the right-hand side with any
(properly normalized) linear combination each term involving a different function w;:

fDA exp (i f d*x L) = |det O] Z C;(w;) f DADa § (G“Au(x) - wi(x)) exp (lf d*x L(A)),

where the coefficients may even depend on w, as long as they are properly normalized. Instead of this
sum, we can also integrate over w and we choose the weights C;(w;) to be a Gaussian function together
with some normalization factors N:

JDA exp (i f d*x L)
(1)2
= |detO| N (&) f Dw exp (—i f d*x 2—5> f DADa § (B“A# (x) — w(x))
exp (lf d*x L(A))
1 2
= |detO| N(&) J DADa exp (—i J d4x2_§ (O“A#) )exp (i j d*x L(A)).
In the last step, we have used the “§-function” to evaluate the Dw-integral. Effectively, we have added

a new term —(9*4,)?/2¢ to the Lagrangian. ¢ is completely arbitrary, as long as the normalization
N (&) as accordingly chosen.

Consider

[DAO(A) exp(i [ d*x L)

(UT O = = oG [ d*x D)

Here, we just wrote a general operator O(A) instead of the product A(x;)A(x,) -+ A(x,) that appears
in a n-point function. We have already taken care of the denominator. As long as 0(A) is gauge
invariant,! we can do exactly the same steps also for the numerator and find

Spa0W@exp(if atx (£ -7 (24,)°))

7 0wle) =— (St (22 (044,)7))

1This is needed in the one step where we also exploited the gauge invariance of the Lagrangian.
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The factors |det (|N(§) f Da cancel, as they occur in the same way in the numerator and denominator.

Let’s now plug in the Lagrangian as in (>15.3.1) and add the additional gauge term:
| d*x (L Lo o*A,)(0YA,) | =—i | d* ! A WO+ (1—E&1)avo* —ie)A
l X _E'S ( u)( v) =l xz y(_n +( _f ) —lE) v

where we performed integration by parts (which yields the minus sign in front of §71). In (>15.3.1)
we tried, but were unable to, find the Greens function of the operator —n*VO + (1 — §71)9v0* — ie
with §71 = 0. Let’s see, if we are more successful with the additional é-term. In Fourier space the
relevant equation reads

(nwk? — (1 — E Dk, k, — i€)iDy? (k) = 8¢,

which is indeed solved by

_ i kiKY
D) = e (”W ~1=0 )

15.4 GraBmann Numbers

15.4.1 Integrals of Grallmann Numbers

For our purposes we do not need definite integrals (that is, integrals with borders), but only the
analogue of ffooo dx, that is integrals over all possible values of x. As we already learned, any function
of a Graffmann variable can be expanded as a linear function, f(6) = A + B0, since all the higher terms
of a Taylor series contain at least one factor 82 = 0. Imposing usual integration rules, we can write

fd@f(@)=fd9(A+B€)=Afd9+de90.

When working with functional integrals, we often shifted the integration variable without changing
the integral. We also want this feature for integrals of Grafdmann numbers, that is we demand that the
integral does not change under a shift0 — 8 + n:

Afd9+3fd99=Jdef(e)éjdef(9+n)=fd9(A+B(9+n))

=fd9((A+Bn)+Be)=(A—Bn)fd9+3fd99 = —andeéo

(note that we commuted df n = —n d). Since this should hold for any complex B and any Grafdmann
number 1, we have [ d6 = 0. The integral [ d@ 6 is in principle an arbitrary constant, conventionally
taken to be 1. Thus,

fd@f(@):fde(Awe):B.

15.4.2 Normal Gaussian Integrals with GraBmann Numbers

When we want to evaluate the integral over e = %%, we expand the exponential function as

1 When I plugged this solution into the Fourier transformed equation, everything cancels nicely and what
remains is

ok +aie

“k+ie’
where o is a bunch of terms; in principle, o is irrelevant, since we can always rename o€ = € — €. However, o
can be negative (depending, for example, on the choice of ). And then it’s probably not so easy anymore to say
that the result is just 8. The point is: I cannot justify the sign of the ie in the denominator of the Feynman
propagator.
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) 1
e~ 9740 — 1 _ 9*a0 + E(Q*QQ)Z +.;=1-06%ab,
0 =0

where all higher order terms vanish due to 82 = 8*2 = 0. Using our simple rules of integration, we
find

fde*de e~ 9"a8 = fde*de (1-6%*ab) = fde*de 06*a = a,

fde*de 00" e~9"a0 = fde*d@ 060* (1—6%af) = f de*de 06 = 1.

For ordinary complex numbers we would get, using z = x + iy,

fdz*dz e~Z0z = jdx dy e~alx*+y?) = g,

fdz*dz 27" e7 % = de dy (x% + y?) e"?0" ) = 2 j dx x2e~ax j dy e=9*

_21JﬁJﬁ_1n
"~ "2aVaNa aa

For Grafdmann numbers as well as for ordinary numbers, the second integral adds an factor 1/a to the
result of the first integral.

15.4.3 Multidimensional Gaussian Integrals with GraBmann Numbers
We want to evaluate

f (I1,d6; d6;)e~%i4iib),

We already evaluated this integral for normal (and real) numbers in the footnote on page 136. Now
that we have complex numbers, we need that the matrix U of eigenvectors of A4 is unitary (instead of
orthogonal).! Plugging in 6; = U;;6;, we find
* It 4 01 ! I% i
f(nidggdei)e—eiAijej — f(nlde{*d0{)8_9] UjiAl]UJkek — f(nidgi’*deil)e_ijej aijkBk

= f (11;d6;*d6))e~ T Ok arbi = J (11;d6}*d6)) ne—e;:ake,;
k
= [ andopaon| [ - aoien) = [ oy ao) [ Jau+aoiop
k k

In the last step, we just reversed 6, 0, = —0,6; . Of this product over k, all terms vanish after
integration except the single factor containing each Grafdmann variable once:

1 Before we move on, we should check if an integral over complex Grafsmann numbers is invariant under
unitary transformations. If 6; = U;;6;, then

1 .. 1 .. , , ,
Hlpzlgi =0,0, = EEU."k 3igj By = Eeu...k Uii’ei’Ujj’ej’ Ukk,gk,

= %eff---k Uyt UpjrUpgr 07161 -+ 00 = %eif---k Ugr Uy Upger €874 11,0] = det U 11,6.
In a general integral [(I1; d6; d0,) f({6;},{6;}), the only term of f that survives has exactly one factor of
each 0; and each 6;; thus f is effectively (under the integral) proportional to (HiHi)(l'[jHj*) =
detU det U* (HiGi’)(Hij'*). Since U is unitary, it holds detU detU* = |detU| = 1. Thus, the integral is
unchanged under a unitary transformation.
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f (11,d0; d9,)e 046 = f a0 a0) | Jaudic0) = () f [,d6!°d6; 610! = Myay
k

= detUTAU = det A.

Now, let’s tackle the second integral, with two Grafmann numbers 8,,6;, in front of the exponential
function. This one is slightly more complicated (the single steps a explained below in detail):

J(nidei*dei) 6,,6;, e ~%i4iif) = f(nideg*deg) Up UL, 61,677 1_[(1 + a;0,6;)

mm " n-m
k

- Z J (11,6} d6}) Uy US, 61,00 1_[ 4, 0.0
n’

k#n'

I* ! ’ I ! I'x 1
= z (| | ak> Unnlug,mf(nidei de;) 0,6, l_[ 0101 = detAz;Unn,U;,m
"

n' \k#n' k#n'

=1
= detd Y Uy Dty UL, = detA (UDTUY) = A5} deta.
n’

This is what happens at the n-th equal sign:

1.

As we already did for the first integral, we substituted 6; = U;;6; and wrote the exponential

as e 0449 = [, (1 + a;0;,0;") (see the first integral at the beginning of the current section
for details).

Of the large product over k only those terms survive the integration, in which each 6; and each
6 occurs (since [ df = 0). Since we already have the two factors 6,,6,/, they cannot appear
in the product over k. However, since in the product over k the factors 6, and 8;" occur
always pairwise, n’ and m’ must be equal and it is exactly this index which must be missing in
the product over k. Therefore, we setm’ = n’ and since n' is no double index anymore, we
write the sum X, explicitly. Of the product over k we want to have the term with all the 6,76,
except for 6,6, .

We can pull out the constant matrix elements U;; and all the factors ay, in front of the integral.
What remains is just an integral over all Grafdmann numbers appearing precisely once.
According to our definition of integrals over Grafdmann variables, this is 1.

We wrote Il .,/a; = a;rll'lkak and used [l a, = detD = detA, where D is the diagonal
matrix to A.

The invers of a diagonal matrix with entries a,, on the diagonal is also diagonal and has entries
1/a, on its diagonal. Thus, since D,,,, = a,, we used Dy} = 1/a,,.

Since D~ is diagonal, it holds ¥; Un; DU}, = Un:Djj' U}, = (UDT'UT) .

Here we simply used D = UTAU & D' = UTA™'U © UD~'UT = A~ (recall that U is
unitary, thatis U~ = U™).

15.5 Quantization of Spinor Fields

15.5.1 Evaluate 2-Point Function with Functional Integrals
Using the general Gaussian integrals over Grafdmann numbers from section 14.4,

f (I1;dB; dB;)e~0i4iif = det A, f (11;d0; d6;) 0,0;, e~ %i4iifi = AL detA,

we find that

fDI,[) DY exp (ifd“x Y(id—m+ ie)l,b) = f@l[l DY exp (—f d*x (@ +im+ E)l/))

= det(8 + im + ¢€),
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f DY DY exp (i f d*x P(id —m + ie)1,b> Y)Y (x,)
— [ Dy Dipexs (- [ @i+ im+ ) pepe)
=@+im+e)tdet(@+im+e)
and hence

~ - DY D exp(i [ d*x (i — ] b
DG 72) = Ol fGeplo) = L 2L TR C T ERRES —m OV i)

=@+im+e)t = (=i(id—m+ie)

where (8 + im + €)' is the inverse operator of 8 + im + €.

An inverse operator A™! is something like a Greens function G of the corresponding operator A. After
all, AA~! = 1is not so different from AG(x) = §(x). The precise relationship is

f d*y G(x— () = A ()

for an arbitrary function J(x). This is obvious, when we apply A from the left and use AG(x — y) =
§(x — y). Using that for matrices as well as operators (aA)™! = a~1A~! for some constant a is true,
we have found above that

Dr(x; — x,) = i(i8 —m + ie) 71,

This equality between a function D and an (inverse) operator is understood to be exactly in the sense
given above, namely that for any function J(x) it holds

j d*y Dp(x = y)J () = i(i@ — m + ie)" 1 (x).

Thus, it must also hold for the choice J(x) = e %, Let’s plug this in, apply the inverse operator on it
and write the equation in from of a Fourier transformation by multiplying e?*"* on both sides:

~ . i .
d*v D _ —iky — —ik-x
J ¥ Dr(x=yJe k—m+ie
~ . i
— d*vD _ ik-(x—y) —
f ¥ Dr(x=y)e k—m+ie
~ — i .
Py D _ = | d*k ————— o~ ik-(x-y)
rx=y) f k-m+ic’
In the last step, we inverted the Fourier transformation.

15.5.2 Generating Functional for the Free Dirac Field
This calculation will be the analogue to the one for the real scalar field from (>15.2.4). We will leave
the i€’s aside here, but technically, they are there.

We plug in the Lagrangian £ = L, = ¥ (i@ — m)y into the generating functional,
Zlin) = | DF D exp (i [ d*x (@ —mp + 17 + ),
and shift the integration variables by

W=y [ @y (=D -) 1) W= [ dhy (=i - ) 7).

=:] =
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Expanding the exponent after performing this shift, we get a whole bunch of terms:

P(id —m)y + M + Pn o
=@ -DE-mE -D+7@'-D+ @ —Dn
=yY'(id —m —¢'(id —m)l —I(i8d —m)’ +1(id —m)I+qy’' —ql +¢'n—In.

Let’s evaluate the second, third and fourth of those terms individually, recalling, that —iﬁp is the
Greens function of (i@ — m):

F8 ~m)l =58 —m) [ dy (<D= ) ) = ',

10 —myy! = [ dy (=iDr(e =) 1)@ —m)y
— [ aty-io - m) (<D = ) 7MW = [ dty (@ - m) (<iBiGx - ) ) 70
=,

[(id —m)I =1 (i8d — m) f d*y (—if)p(x - y)) n(y) =In.

For the second of those three terms, we made use of partial integration. Plugging those results back
in, we find

P(id —myy +mp + Py _ I
=yP'i@ —myy' —P'n—qY' +In+ P’ —ql +P'n—1In
=y'(i8 —myy' -7l
Since we only performed a simple shift, we can replace Dy Dy — Dy’ Dy’ and we find
Z[a,n] = fDl,[_)’ DY’ exp (i J d*x (Y'(i8 —m)y' — ﬁ])) = Z[0,0] exp (—i j d*x ﬁ])
= 200,01 exp (i [ ax d*y 7 (=i = )0
= Z[0,0] exp (— f d*x d*y 7j(x) Dp(x — y) n(y))-

15.5.3 Evaluating 2-Point Function with the Generating Functional
Using the explicit formula for Z[7,n] for the free Dirac field theory, we find

Z[g, 0] (- 5;7((21)) (i (Sn?xz)) Zln, '7]|

nn=0
5 5 4. g4 _
&ngl) o1 (x3) () P f 4 d’y 760 Dp(x =) n(y)>‘n.n=o
57](361) 57](362) f d*x d*y 1(x) Dr(x — y) TI(J’))‘M:O

- e ([ @ a0 Detx =) 66 - )|

= fd“x 8(x — x;) Dp(x — x,)

nn=0

= 51?0‘1 - X3).
nn=0

We used the fact, that we were able to expand the exponential of Grafdmann numbers exactly to first
order. When evaluating the derivative with respect to n(x,), we had use the differentiation rule

0 i = —
5n(x2)n(x)n(y) 77() ( )TI(}’) n(x) 6(x, — y),
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which brought us an extra minus sign.

15.7 The Schwinger-Dyson Equations

15.7.1 Taylor Expansion of a Functional
We want to proof the Taylor expansion

L' ()] = L[p(x) + ()] = L[p(x)] + €(x)

5
5¢(x)fd4x LloGD] + 0(€2)

“by example”. We use the abbreviation ¢p' := ¢ + €. That is, we want to check whether it is true for the
free scalar field Lagrangian £ = (au¢)(aﬂ¢)/2 —m?¢?/2. Our first task will be to compute the
expansion of this particular Lagrangian. We use partial integration here, which is okay, since we will
only need this expansion when the Lagrangian is placed in an d*x-integral:

1 1 1
(61 =5 ((0,)@49) ~ m2p) = 26/ @ +mDp’ = 3 (6 + (A +m)(B +0)
= —%(q&(l:l +m?)¢p + e(d +m?)¢ + (O + m?)e) = L[p] — e(O + m?)¢.

Alright, so let’s see if our above given formula yields the same result. For that purpose, we first
calculate

d*x' L{p(x)] = d*x" ¢(x) (O, + m*)p(x")

1 6
8¢ (x )j EWJ
- [ a5 = 0@+ mpe + [ @t gy

)
5500 O +mI9E))

- +myee0+ [ @ @+ m206) 50— 9
AG x 6¢><)

1
= =5 (@ + m)P(0) + (O + mD)P(0) = (@ + m?)$(0).

Thus, the right-hand side of our equation reads

L[p(x0)] + e(x) d*x' L[p(x")] = L[p] — (O + m*)g,

5¢( )

which is exactly would we also found with the direct calculation.

15.7.2 Derivation of the Schwinger-Dyson Equations
We are going to derive the Schwinger-Dyson equation for the 3-point function of the real scalar field;
they will take on the same form also for any other theory and any n-point function.

The 3-point function of the real scalar field is known from section 14.2; it reads

@ITPGPIB0xI0) = 7o [ Do enp (i [ a5 £19]) $Gr)pGr B

We can perform a shift ¢p(x) - ¢(x) + e(x) =: ¢'(x), which leaves the measure D¢ unchanged. The
step of shifting the integral is the following equal sign:

[ Do exp(i [t c11) p009GB0xs) = [ Dpexp (i [ avx £19T) 9o ) ).

We want to consider only terms up to order € of this equation. On the left-hand side, we have only an
€%-order term. On the right-hand side, we find
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¢ (x)P" (x2)" (x3) = (¢(x1) + E(x1))(¢(x2) + E(xz))(¢(x2) + E(xz))
= P(x)P(x2)Pp(x3) + €(x1)P(x2)Pp(x3) + P (x)e(x2)P(x3) + Px1)P(xz)e(x3) + 0(e?)

and

exp ifd‘*x[l[d)’]) = exp ifd4xL[¢>+e]>

= exp( fd‘* ( d(x)] + e(x) 6¢6(x)fd4x, Lp(x)]+ 0(62)>>

= exp in‘*x L[(;b(x)] 1 + ifd‘*x e(x) d*x' L[p(xX)] + 0(62))

—eiSip00)]

5¢>( )

Here, at the second equal sign, we used the functional analogue of a Taylor expansion of L[¢ + €] for
small €. Putting those two results of the right-hand side together, the order €° is equal to the left-hand
side and what remains is only the order €:

0= [ Dpeisior (i [t et (550 [ @5 £10G0) D0 GI00)

5¢( )
+ () (xz)p(x3) + P(xp)e(xr)p(x3) + ¢(x1)¢(x2)6(x3)>.

Substituting e(x;) = [ d*x e(x) §(x — x;), we can put also the three terms in the end underneath the
d*x-integral. After that, we can get rid of the e(x) and d*x-integral, since the right-hand side must
vanish for any e(x). Finally, we put the first of the four terms in the large bracket on the other side of
the equation and multiply by i:

f D ¢S ey f @' LIHGN]) $lr)dCe)plxs)

- f Dp eBSPN (i6(x — x1)p () () + b (x)iB(x — x2)b (xs)
+ P (x) P (x)i8(x — x3)).

To see what happens next, let’s for one step insert the example for the free Klein-Gordon field derived
in the footnote earlier in the current section, that is we plug in —(O + m?)¢(x) in the first of the first
terms:

f Dp SO (— (0 + m2)p(x)) ()b (x2)p(xcs)

= f Db eI (18(x — x) () (xs) + ()i (x — 1) (x3)
+ ()P (x2)i6(x — X3))-

We can now pull the operator in front of the functional integral O + m? (of course, it still only acts on
the single field ¢ with variable x, not the ¢(x) in the Lagrangian in the exponential (we maybe
should’ve called this integration variable x differently). Anything else is nothing but n-point functions
(recall that S = [ d*x £) and we find

—(O 4+ mAQIT p(x)p(x1)p(x2) P (x3) Q)
= (QIT i85 (x — x1) p(x2)P(x3)[Q) + (QUT P (x1) i6(x — x3) P(x3)|2)
+ QT p(x)P(x;) i6(x — x3)|Q).

Note, that we were only able to pull the term [0 + m? out of the integral and thus out of the n-point
function, after we wrote it in this explicit way; we were not able to pull out its general pendant, the
functional derivative over the integral of the Lagrangian. Still, we want to write this last equation also
in the general case, but we can only do so by defining a tedious notation. We write the formula as
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(5305 ] @ £106) pG0GI06)

= (I8 (x — x1) p(x2)P(x3)) + (P (x1) i8(x — x2) P(x3)) + (P (x1)P(x3) i8(x — x3)).

To be in consistence with the example we just calculated, the angular brackets denote a time-ordered
correlation function in which derivatives on ¢ (x) are placed outside the time-ordering symbol (and,
if one wishes, also outside the whole correlation function).

When we generalize this to an arbitrary number of fields of arbitrary types (we call them ¢ =
¢, A, Y, ...), we find what are called the Schwinger-Dyson equations:

<<%J 4 L{p(N]) o) o) = Z“"(’“) 08— )+ ).

15.7.3 Noether’s Current Conservation

To derive the Schwinger-Dyson equation we used the invariance of the functional integrals under a
simple shift ¢ - @' = ¢ + € ofthe fields. That s, € can be an arbitrary function, but still this procedure
is limited, since € cannot contain ¢. For example, ¢ — ¢’ = e'®p = ¢ + iag, that is € = ia¢, is not a
simple shift.

Still, the action can be invariant under such transformations as well and it is therefore worth to take a
look on how to handle them. Let’s consider general transformations

xt o xt=xk+6xt,  @a(x) = @a(x") = Pa(x) + 5, (x)

for coordinates x* and a set of fields ¢,. We already did this once, back then in section 3.2, when we
derived the general case of Noether’s theorem. What we found was that the action transforms under
this transformation like

oL
S—>S+6S, 58S = jd(d‘*x L) = Jd‘*x 0,6/, Sjt = =T 8xV + — 69,
a(au‘pa)

and the current is conserved: 9,6;# = 0.

If we write our transformations in dependence of an infinitesimal parameter dw, thatis §x* = dw Ax*
and 6¢,(x) = Sw Ap,(x), then also

w20 g g + oL,

=—=— xV +——-7 .

] 60) % a (au(pa) (pa

If we now take w = w(x) to be x-dependent, this also changes the current such that 9, j# # 0 and also
the action is not conserved anymore:1 §S = [ d*x j* (x)9,8w(x).

The action is nor more invariant. Let’s assume that the transformation of the fields ¢/ (x") = ¢,(x) +
Sw(x) Apy(x) is a unitary transformation. Unitary transformations have the property that they do not
change the integration measure, thus D¢, — D¢,. We than can go back to the following equation right
at the beginning of (>15.7.2) as it still holds for our general unitary transformation:

f Do 519D g, (x1) 0, (X3) P (x3) = f D 519" 7 (x1) oy, (x5) 2 (5).

1 Let’s check this for the example of the Dirac Lagrangian £ = y(i& — m)1). We know from section 3.4 that
it is invariant under the transformation 6y = —i Sw v, yielding the current j* = yy*. Let’s see what
happens if we choose w = Sw(x) to be x-dependent:
LYl = @ + idwp)(i8 —m)(Y — ibwp) = L[P] — i (i8)Swy + ibwip(i8)
= L[Y] + P((BSw)Y + Swdy) — Swpdy = L[Y] + Py*¢od,sw = L[Y] + j*9,6w.
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Plugging in S[¢@’ (x")] = S[e(x)] + 6S[¢(x)] with the &S given above, we find

| Do €10 gy (1), () )
= [ Do e exp (i [ dtx j# ) 0,80(x)) ¢xih L)

Then we expand the equation on both sides up to the first order in Sw. As in (>15.7.2), the order §w°
on the left- and right-hand side are equal and what remains is only a zero on the left-hand side and the
order §w? on the right hand side. There is a Sw in the term with the current and in each of the three
dashed fields. The first order in dw on the right-hand side therefore contains four terms each of which
gets its Sw from either the current or one of the three fields. As in (>15.7.2) we put the first term (with
the dw coming from the current) on the left-hand side:

f Dy 'Sl )] (—i f d*x j*(x) aﬂ&u(x)) Pa (1) @y (2) P (x3)

= ID¢ eiSlot)] (5(*’(951) Apq(x1) @p(x2) e (x3) + g (x1) Sw(x3) Ay (x2) @ (x3)
+ @ (x)ep (x2) Sw(x3) Ap,(x3)).

Now we perform partial integration in the d*x-integral to get from j#d, 6w to —8wa,j*. Then, we plug
in 5w (x;) Apg(x;) = [ d*x Sw(x) Ap(x) (x — x;) in the three terms on the right hand side. Since
Sw(x) is arbitrary, we can get rid of it together with the d*x-integral on both sides of the equation:

[ Do 511 (10,4)) a0y ) x)

= f D eSO (Ap, ()8 (x — x1) 9 (x2) 9 (x3) + 9o (1) Ay, ()8 (x — x3) @ (x3)
+ 0a ()95 (3) Dpc ()8 (x — x3)).

Next, we multiply the equation with —i. Also, by our definition of the meaning of the angular brackets
in this context, we can write this equation as

(auj#(x) (Pa(x1)(/)b(x2)§0c(x3)>
= (Aq (x) (—)6(x — x1) @p(x2) @ (x3)) + (Pq (x1) Ay (x) (=) (x — x2) P (x3))
+{0a (1) (2) A () (=S (x — x1))-

For an arbitrary number of fields, we find correspondingly

(auj#(x) (pal(xl) (pan(xn)> = ((pa1 (xl) A(pai(x) (—i)(S(x - xi) ¢an(xn))-

l

15.7.4 Ward-Takahashi Identity
In QED, the transformation ¥ —» e~% = (1 — ia)y = P — iarp with AY = —ip, Ay = i1 yields the
current

J* =yt
as we have seen in section 3.4. Thus, the Schwinger-Dyson equations for the 2-point function read (we
can set x = x;, if there is a corresponding §-function nearby)

<a#j”(x) 1/J(x1)1[_)(x2)> = (Al,li(x) (—)86(x — x4) Il_’(xz)) + (¢(X1) Al[_l(x) (=)o(x — xz))
= _i<¢(x1) (=)8(x — x4) Il_’(xz)) + i(lp(xl) 1l_)(xz) (=)6(x — Xz))
= _(5(35 —x;) —0(x — xz))(lp(%)lﬁ(xz»

= (auj“(x) 1/)(x1)lﬁ(x2)> = _(5(95 —x1) —6(x— xz))(lp(xl)llj(xz))
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= 6#<0|Tj“(x) ¢(x1)lﬁ(x2)|0> = _(5(35 —x)—6(x— xz))(0|T ¢(x1)1/;(x2)|0).
Multiplying by e~¥¥ ¢ldX1 ¢=iP*2 and integrating over x,x;,x, yields on the left-hand side (we
perform partial integration with the d,,)

J d*x d*x; d*x, e ¥ el0%1 g=iPX2 g (O|T j#(x) Y ()P (x2)]0)

= —(—ikﬂ) f d*x d*x, d*x, e”kX gld X1 g=ip Xz (0|Tj“(x) w(xl)zﬁ(xz)|0)

=iky

=gk, f d*x d*x, d*x, e k¥ gldX1 g=ipX; (0|T igji*(x) l[}(xl)llj(xz)|0) = gk, MM,

Note, that igj* = igyy*y contains the vertex factor. Thus, this is exactly the amplitude M* for two
external electrons with one vertex, but without an external photon field - that is, there is no
polarization vector # of the external photon, but instead there is a k,, in front. This is exactly what we

had for the Ward-Takahashi identity.

Now, we consider the right-hand side: Also here, we perform the integration over x,x;, x, after
multiplying by the exponential functions:

— f d*x d*x; d*x, e "X el@¥1 e=P%2 (§(x — x1) — 8 (x — x32) ){0]T (1) (x,)|0)
= — .[ d*x; dx, e ik=0x1 p=ipxz (0]7 ¥ (x1)P(x,)]0)

_ f d4x1 d4x2 e~ ik+D)x; 5iqxy (0|j]" lli(x1)1/_’(x2)|0)
= —Mo(p;q — k) + Mo(p + k; ).

Again, we get amplitudes (to see this, also recall the alternative LSZ reduction formulas from section
7.5. Hence, the equation reads

k, MH (ks q) = —g(Mo(p, q — k) — Mo (p + k; @)).
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16 SYSTEMATIC RENORMALIZATION

16.1 Superficial Degree of Divergence

16.1.1 Formula for the Superficial Degree of Divergence (QED)
We already found that the superficial degree of divergence can be given as

D=d-L-P—2P,

Recall, that in our original Feynman rules given in section, each internal momentum (that is each
propagators) comes with a momentum integral and each vertex with a §-function, eliminating one of
the integrals. The remaining integrals are loop integrals and their number is the number of loops. Thus,
the number of loops L (remining integrals) is the number of propagators (initial integrals) minus the
number of vertices (§-functions). Well, actually, there is one §-function left in the end, the one that
ensured total momentum conservation. As it is not use to eliminate integrals, should take V — 1
instead of V:

L=P+P—(V-1).

Also, each external photon is connected to one vertex, each internal photon is connected to two
vertices. And each vertex is only connected to exactly one photon:

V =2P, +N,.
By the same argument, we have 2V = 2P, + N..
Let's now plug in the L from above into the formula for D and then we plug in P, = V/2 — N, /2 and

P.=V — N./2:

d-(P+P - (V -1))- P —25,

1.1 1 1.1
=d (( 2 )*(EV‘ENY)‘(V‘l))‘(V‘zNe>‘2(zV‘sz)
1 1
=§d-(—Ne+V—Ny+2)—2V+§Ne+NY
d—4 d-2 d—1

—d+(d 2)V+( d+1)N +( d+1)N—d+ 174 N. N
B 2 2 4 2 2)7 2 2 Y e

16.1.2 Mass Dimension of the QED Coupling Constant
The action often appears in the exponent of an exponential function like exp(iS). Thereby, it must be
dimensionless in natural units. In those units, d%x has the dimension m~¢ (see section 1.2), which we
will simply call “mass dimension —d” for now and write [dx] = —1 and [d%x] = d[dx] = —d. Since
S = [ d®x L, the Lagrangian must have mass dimension d, which we will write as [£] = d. Consider
the QED Lagrangian
1 . _

L= =2 FEy + 930 —m)p + gytpa,,  FIE, = (9"AY - 0vAM) (9,4, — 0,4,).

Obviously, we have from the kinetic energy of the photon
d
d=[£] = [FE,] = [(0"A)*] =2[0"] +2[A"] =2+ 2[4"] &  [4=—1—,

since [0#] = —[dx] = 1. The fermionic term yields, assuming [y] = [¢],

d =[] =[] = [m] +2[p) = 1+ 2] & []=—
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Knowing the dimensions of the fields, we can finally use the interaction term to find the dimension of
the coupling constant:

d=I[L]=[gypA,] =gl +2P] +[4] =gl +2—+—— & 9] = ———

16.1.3 Formula for the Superficial Degree of Divergence (¢* Theory)
Let N be the number of external lines, P the number of propagators and V the number of vertices. Let
L be the number of Loops. Since each vertex has n lines attached to it, we have

nV =N + 2P,

since in total we have nV attached to some vertex. A propagator is attached to two vertices, an external
line to one. By the same argument as in (>16.1.1), the number of loops can be given as

L=P—(V-1).

The propagator in ¢* theory has two powers of momentum in the denominator (as we know from
section 8.1). Each loop contributes d powers of momentum in the numerator. Thus, the superficial
degree of divergence reads

D=dL—2P=d(%(nV—N)—(V—1)>—(nV—N)=d+(nd;2—d)V—EN.

In the same way is in (>16.1.2), we want to determine the mass dimension of the coupling constant 4.
The kinetic term yields the mass dimension of the field:

d=[£L] =[(09)?]=2+2[¢p] & [¢] = ——.

Thus,

a==g =+t e m=-(n"2-a)

16.2 Divergent QED Amplitudes

16.2.1 Furry’s Theorem

In QED, S-matrix elements can be written as a Fourier transformed n-point function of the external
Heisenberg fields by LSZ reduction (see section 7.5) and those n-point functions can in turn be written
as correlation functions of the external interaction picture fields together with an exponential function
of the interaction Lagrangian (see section 7.9). Thus, in S-matrix elements, we will encounter
correlation functions of the form

(0|7 (external fields) exp(i [ d*x Ly, 10),

where L, = gl,l_)y"l,l)A” (with g = e > 0). In the n-th order of perturbation theory (that is the n-th
order of the Taylor expansion of the exponential function), we have the following contribution from
the exponential:

1/, mo(ig" _ _
(i v ) =TI [t e dt B A G BV i) Ay, G
The photon fields commute with the fermion fields and we can then separate the correlation functions,
such that we have one with all the photon fields and one with all the fermion fields. Furry’s theorem
applies to amplitudes with external photons only, thus we assume that the only fermion fields come
from the exponential. The correlation function of the Fermion fields then reads
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(O Ge v rp () -+ P )yFnip(a)]0) = (012 (xy) -+ j#n (x)10),

using the fermion current j# = y#.

Any internal photon is attached to two vertices. Thus, there must be an even number of vertices with
only internal photons attached to them. Each external photon is attached to one additional vertex.
Thus, the total number of vertices is even or odd for an even or odd number of external photons
respectively (in other words: for an odd number of external photons all orders of perturbation theory
with even order will vanish).

Hence, for an odd number of external photons, we have only diagrams with a correlation function of
an odd number of fermion currents; that is n is odd.

If we use now that the current transforms under charge conjugation by Cj*CT = —j#, we can plug in
a pair of C*C between all the currents, use C|0) = |0) and thus

(012 (xy) -+ j#m (en)10) = (0|CTCj#1 (x)CT -+ Cjtn () CTC[0) = =(0]CTjH1 (xy) -+ j#n () C|0)-

For an odd number of currents, we get a total minus sign. Thus, this correlation function vanishes and
thereby all diagrams with an odd number of external photons.

16.2.2 The Electron Self-Energy

Let’s call the amputated amplitude (that is, without the external fermion spinors, since they do not
appear underneath a potentially diverging loop integral) of the amputated electron self-energy
diagram F. According to Feynman rules, this amplitude is a function of the slashed electron
momentum g, so let’s Taylor expand it:

_1d"F(p)
Tl dpn

F@) = Fo + Fip + Fop? + -, Fy
p=0

After applying the §-functions of the vertices, the momenta appearing in the denominators of the
propagators are a combination of the external momentum p and one or more loop momenta, which
we denote here as k. And the amplitude is a sum of products of such propagators. When differentiating

with respect to p, we get several terms from the product rule and in each term, there will be a
derivative

d 1 1
dpp+k—-m  (p+k—m)?

That is, each derivative with respect to g lowers the superficial degree of divergence (the power of k)
by 1. Since F, = F(p = 0), F, has the same superficial divergence like F, namely D = 1. Thus, F; is
superficially logarithmic divergent and all F,,,, are finite. That is, F; ~ A and F; ~ In A. However, the
actual divergence (in contrast to the superficial one) of F; is also just ~ In A: We know this, since we
explicitly found in section 11.5

5 = “fld @ ™ 4 (e
»=2n), x (2m = xp)In— a

(note that m = mg, + O0(a)).

16.3 Counter Term Renormalization

16.3.1 Counter Terms
Recall from section 13.5, that we can write the full bare propagators and the full bare vertex factor as
the finite renormalized propagators and the finite renormalized vertex factor times factors of Z;:
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i _ iz,
p—mo—2(») p—m—2x(p)
—in* 1 _—in? Zq

> 1-1(q®) > 1-Tk(g?)’

where X = X(p) —Am — §,(p — m) + 0(a?),

where Il = I1(g?) — 85 + 0(a?),

g
GorH(@) = - =T (@, where T (q) = y* (1+6F,(¢%) + 57 +0(a?))
' ic"q,

+2m

Fz(qz)-

In chapter 13, we defined the §; as the corrections to the field strength renormalization: Z; = 1 + §;.

A quantity with superscript (2) like (Si(z) denotes its order-a contribution. Let us also define §,, as
follows:

1
O =Zymy—m = mo:Z—(m+6m)=m+8,(,f)—m62(2)+0(a2)
2
— o — — _s@ () 2
= Am ==m—my = =6, + mé,” + 0(a*)

= @) = ZP®) + 6y — Som — 8,(p —m) + 0(@?) = 2@ (B) + 6, — 5,1 + 0(a?).

Let us expand the renormalized electron propagator (this is just the derivation of (>13.3.2)
backwards) in a:

i iZ,
p—my—3(p) p—m—Ix(p)
=7, ( i —( 12(2)(;9))

p—m p—m p—m p—m

@, <@\ L 2
(62 p— Oy, )p—m+ O(a )).
The same thing for the photon propagator reads (backwards computation of (>13.4.7))

—in* 1 _—in? Zs
> 1-T(@>  ¢q* 1-Tk(q?)

- 23((_i’7“”) +(- q”;‘" iMP?’ (q) — >+0(a2)>

q2
—in —in U
-7, (( )+ (22 it — 0P ff)n@)(q) q"”)+0(a2))
_in,uv) (_inup ) 7]01/)
=7 ( + ifntere
3( qz qz (Q) q

“Mup . @\ Moy 2
+( i(g*nP° — qPq°) (-6 >+0(a)
2 @7 —a%q (-o7) - pE

Similarly, the expansion of the vertex correction reads

igoT™(q) = r“(q) = (yﬂF“)( 2y 4 10 p @) g2y 4 yus® +0(a2))

g
27 " 1J_ 2m

1
= F@u(q) +igy*s® + 0(a?)).

Recall that —iZ® is just an electron line with a single photon loop, il1®?7 is the fermion loop of the
photon self-energy and I'®* is the first correction to the QED vertex. Recall that we can use the
physical masses and charges instead of the bare masses and charges in these terms, since the
difference is of order a?. Let us therefore give the three equations above pictorially as follows:
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i ~ iz, _ (
p—mg—X(p) p—m—I(®) 2

—intv 1 B —inHv Zq B
g 1-Ti(g?) q? 1-Tig(q?)

+ L g +o(a2))

Za.(w\/\./\, +./\OA. +./V®V\.+U(a:2))

tg u — 1 ( & 2)
thz_grR Zn/Z_s 3 + 3 +—?—+O(a)

Here, the third term in each bracket is called a counter term; comparing with the equations above, we
define such Feynman diagram lines as

—Q@— =i(sPp-57)
NVRWN = —i(gPnh — q4q*)57,

_?_ = lgy#é‘l(z)

Note, that the 51'(2) are of order a; hence they do never appear at leading order computations.

\':g(}r'u =

We have seen in (>13.5.7) that the factors Z; of the propagator will precisely cancel the factors Z; of
the vertex factor. That is, we can effectively “ignore” these factors and simply compute the Feynman
diagrams in the brackets as propagators and as the vertex factor to NLO. The counter terms will cancel
the divergences of to one loop diagrams.

For example, Compton scattering will contain the following diagrams to order a? (compare this
diagram expansion to the one in (>13.5.7)):

Sl >l

(KK

16.3.2 The Renormalized Lagrangian with Counter Terms
The original QED Lagrangian is

1 - . 7
L=-— ZFOWFOMV + Yo (18 —mo)Po + Gooy odop-

Here, we did not only equip the mass and the charge with an index 0, but also the fields. That is, this
Lagrangian depends on the bare mass, the bare charge and the bare fields.

Let us then introduce renormalized fields 1, A* without an index 0 as

Yo =29, Af=\ZsAM.

In terms of the renormalized field, the Lagrangian reads
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1 -, 7
L=- ZZ3FMVF['I.V + Zy(i8 — mo + Zp\/ Z3gopyHYA,
1 — , 7
=— ZZBFWFMV + Y(Z3i8 — ZZpym)Y + Z gy H A,

where we have also plugged in

Z2\Z3

Z: Jo, mgy = Z,m.

g::

Let us now use the following relations between the Z;’s and the §;’s:
Zl=1+6l, Zz=1+62, Z3=1+63,
ZyZygm =m+ &p,.

Plugging in these relations, we find
1 - _
L=—7+8)F"E, + P((1+8)id — (m+ 8¢ + (1 + 5 gPyH Y4,
1 —_ _
= - ZF”VP;W +y(id —m)yp + gl/)Y”ll)A#
1 —_ _
_153F!WF;W + l/)(52i@ - 5m)¢ + 5191,[))’#1,[114#-

The first three terms are precisely the terms of the standard QED Lagrangian, with the fields replaced
by the renormalized fields and the physical mass and charge instead of the bare mass and bare charge.
That is quite nice, however there is a downside: We have also three new terms in the Lagrangian,
called “counter terms”.

16.3.3 Mass Term as a Perturbation

It may seem odd to take the first two terms of the counter Lagrangian as a perturbation; after all, they
are no interactions but a kinetic term and a mass term. In fact, it does not make a difference, if a term
in the Lagrangian is taken as a perturbation or not, as long it is computed to the sufficient order of
perturbation theory.

To get a better understanding of this fact, consider a free scalar theory
1 m?
L==(0 p)? —— 2
S (@44 — =
In section 8.1 we found that the propagator of this theory reads
i
g2 —m?

Let’s now see what we get if we treat the mass term perturbatively as a interaction. In this case, the
propagator would only come from the kinetic term (8#¢)? /2. This kinetic term can also be thought of
a the Lagrangian of a free massless scalar field. Therefore, the propagator then is just i/q?.

In 8.1 we found that an interaction term —A¢*/4! yields a vertex with four attached propagators; it
comes with the Feynman rule —iA. In analogy, our mass term —m?¢?2/2! can be treated as a vertex
with two attached propagators and a vertex factor —im?.

Since this is the only interaction of our Lagrangian, the full propagator is as usual (like in chapter 12)

full propagator = + @ + + o

with the one-particle irreducible simply containing one of the “mass vertices”. That is,
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_l i ., i i .y i i 2 _l had n
full propagator—q—2+q—2(—1m )?4—? —im )?(—lm ——znz:: (—im?

which is exactly the same propagator, as if we had taken the mass term as a mass term in the first
place. Thus, it is absolutely consistent, to treat terms like mass terms (but also kinetic terms) as
perturbations. If they don’t contain the coupling constant (like in the example above): We have to
expand them to infinity or can equivalently handle them exact (as we did always before). If they do
contain the coupling constant (like for the mass counter term): A expansion up to the necessary order
in the coupling constant is sufficient.

That is, as long we expand the perturbation term to sufficient order in the coupling constant, we can
treat any term as a perturbation. Thus, it is definitely always valid to treat the counter terms as
perturbations, since they contain coupling constants.

16.3.4 Counter Electron Propagator from Renormalized Lagrangian
We know that a Lagrangian term 1, (i8 — m), yields a fermion propagator with the Feynman rule
i/(p — mgy) exactly. Thus, we expect that a Lagrangian with the two terms

P18 — M)y + (8,18 — 5P = P((1 + 8,)id — (m + 8) b
yields a propagator with Feynman rule
i
1+ 8)p—(m+6,)

to all orders of perturbation theory. Expanding it to NLO yields
i _ i
(1+8)p—(m+6,) p—m+ (50— 6p)

i i

P~ (6P~ ) g
: @, _ s@)_L ) 2

1+i(6 [, + 0(a?)
=5 (1)

b i @, @) L 2
_p—m+p——m (62 p—0p )p—m+0(a ).

Thus, the counter term of our newly constructed Lagrangian produces nothing but a vertex,
connecting two fermion lines, with the vertex factor i(§,p — &,,). Thus, our newly constructed
Lagrangian does indeed yield the Feynman rule

—®— = (s -5)

16.3.5 Counter Photon Propagator from Renormalized Lagrangian
We know that a Lagrangian term —FO“ VFOW yields a photon propagator with the Feynman rule
—in*/q? exactly. Thus, we expect that a Lagrangian with the two terms

1 1 1
_ZF#VF,uv —153F#VFHV = —Z(l + 63)FHVF#V

yields a propagator with Feynman rule
_inﬂv
q*(1+683)
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very similar to (>16.3.4).1
In (>13.4.7) we found that
_inuv> <_i7]up , _inov> —i ( quqv> 1 —i qudv
+ nPo(q) —= )+ =—nu — + ==
( q° 2 1@ g G\ T )T ¢ ¢
where terms ~ g#qV effectively vanish due to the Ward identity (this is also explained in (>13.4.7)).
Note also, that 1?7 (q) = (1”9 q% — qPq°)11(q?). Thus, effectively, this equation can be written as

_inuv 1 (_inuv) (_inup , 2 @2 _inav) 2
= + i(nP?q* —qPq°)ll ——— )+ 0(a?.
2 1-T(g) 72 P2 (P?q* — qPq°)I1'*(q%) o (a®)
Hence,
— Uy (—imw) (_inup oo 2 oo (s —inav> ,
q2(1+63) qz + qz 1(77 q q q )( 3 ) qz + (a )

and thus, the Feynman rule

\/\/®\/\4 = —i(g*n*v — q“qv)é'éz),
indeed follows from our newly constructed renormalized Lagrangian.

16.3.6 Counter Vertex Factor from Renormalized Lagrangian
We know that a Lagrangian term gooy*Ao, yields a photon propagator with the Feynman rule
igoy*. Thus, the term

gs Py P4,
obviously yields a term
igéiy*
and thus, the Feynman rule

? = lgy#é‘fz)

indeed follows from our newly constructed renormalized Lagrangian.

16.4 Renormalization Conditions
16.4.1 On-Shell Renormalization Conditions
In section 13.5 with found that the full interacting fermion propagator can be given as
i B iz,
p—mo—Z() p-—m-—Iz(p)

where the factor Z, can be cancelled with a factor Z; ! that appears in the vertex corrections (>13.5.7).

In section 13.5 we have seen explicitly that Zz () obeys Zz( = m) = 0. This ensures that the pole of
the renormalized propagator indeed lies at the physical mass m. Let us now turn around the argument

LIf you are not convinced that this is right, take the kinetic counter term of the photon and perform partial
integration:

1 b1
— 2 03P Fyy = 5 A (=600 — 8,049") A,

Then, §; appears as a proportionality factor of [ and the propagator - that is the Green’s function of this
operator - will have this factor &5 in front of its g2.
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and impose Xz(p = m) = 0 as a condition. Using the explicit form of Zz(p) from (>16.3.1), this
condition implies

zr(m) = (22 () + 53 - 52(2)p)|19:m +0(@?) =2@(m) + 62 - 6Pm + 0(a?) = 0.

Analogous to (>13.3.4), the condition 0% (p)/0p|p=m = 0 ensures that the residue of the pole of the
propagator is iZ, (after cancellation of Z, only i). This condition implies

02z (p) a 2@ (p)
= (0@ + 67 - o) +0@H ="
op p=m 639( " : ) p=m op

— 8% +0(a?) = 0.
p=m

We can now use these two conditions to fix the counter terms as

5@ 92 (p)

5 o , 59 = 69m — 3@ (m).

p=m

Of course, 2@ can still be known only by explicit computation of loop corrections. Note that - by

construction - this fixing yields the same result for 62(2) as in section 13.3. Thus, fixing the §’s by the
use of the renormalization conditions

Xz (P)
op

Ir(p=m) =0,

p=m
is a perfectly consistent way to find explicit expressions for the counter term §’s.
Similarly, the pole of the full photon propagator

_inyv Z3
q*> 1-Tg(q*)
also known from section 13.5 (where the factor Z; is again cancelled against a vertex correction), has
a pole at g% = 0 due to the fact that [1z(qg? = 0) = 0 (see section 13.5). Again, we can impose

Iz (g% = 0) = 0 as a renormalization condition which fixes 5352):
Mg(q? = 0) = 1@ (g% = 0) - 5 = 0.

Finally, we have found in section 13.2 that 51(2) = —§F,;(g? = 0). This fixing of 51(2) is achieved by the
renormalization condition

Ty (g =0)=yH
since

=0 =y*(1+6R0O) +62)+0=y* o 67 =-6F(0)

16.4.2 Explicit Formulas for the Counter Terms
In dimensional renormalization, we find (without proof)
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ptde? 1 r2-d/2)
— (4n)d/2_f0 ((1 — x)?2m? + xv?2)2-4d/2

e 2x(1—-x)m?
(2—6)96—2(1_36)21712 2 (4—2x—6(1—x))

S NPT
 8m?\e an2 nm2 &)

where m is the electron and v an artificial photon mass. Note that the terms with an € in the first

formula for §; = §, do not vanish for € — 0, since the I'-function contains a 1/¢ pole (see section 13.2).
Also,

_optle? b T(2-4d/2) 4 e? (2 2
63——Wf0 de'SX(l—X)——§(4n)2 E‘l‘ll’lm‘l‘O(E) .

16.5 About the Charge Renormalization

16.5.1 Equality of the first two Renormalization Factors
From section 11.6 we know §Z, = —&F;(0). Thus,

6Z, = —6F;(0)

= 1+6Z,=1-6F,(0)
= Z,=1+4+6;

s Z,—1=6;

= 6, = 6;.

We used here the definition §, := Z, — 1 from section 15.3 and the observation §; = —6F;(0) from
section 15.4.
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17 THE RENORMALIZATION GROUP

17.1 Analogy to Statistical Mechanics

17.1.1 Wick Rotation in the Generating Functional
We know from section 14.2 that the generating functional of scalar fields reads

201 = [ Dgexn(i [ d*x (£ +1900)),

where - in ¢*-theory - the Lagrangian reads

1 2 A
L= (M)~ g — 7",

In section 12.4 we introduced the Wick rotation applied to four-momentum integrals; however, there
is no reason why it should not also be applicable to Minkowski space coordinates. We substitute x° =
—ix2 and ¥ = ¥g, such that x? = (x°)? — ¥? = —(x2)? — |¥z|?> = —x2. Since

1 2
(019)* = (0°9)" — (V) = (=080 — (Ve)” = —(03¢)* — (Ve)? = —(ofi¢)’

and d*x = —id*xg, we find

1 2 m? A
_ n _.
L=—5(00) — 50?0 = L

and thus

21 = [ D exp (=it [ d*xg (~L5 +1 o))
~ [ Dpexp (- [ avxs (25 I Cx)pCxn) )

17.1.2 Euclidean Correlation Function
We will now perform the analogous steps to (>15.2.4) for our Euclidean description. Using partial
integration, the Euclidean Lagrangian of the free Klein-Gordon field can be written as

1 2 1
Ly =5 (048) +5-¢* = —5 60 —m)e.

In (>15.2.4) we shifted the fields by (some integral of) i Dg, which was helpful because of the fact that
iDy. is the Greens function of the Klein-Gordon operator (1 + m?2. Hence, in the present case we use Dg
instead of iDp, where
_ eikE-xE
Dg(xg) = — | d*kgp—5———
E( E) f E é + mz

is the Greens function of Oy — m?:

—kZ—m?

————ekEXE = §(xp).
k2 + m? (xe)

(O — m)Dy(xg) = — f ARy

Similarly to (>15.2.4), we shift our field (which is the integration parameter of the functional integral)
like
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' =¢+ f d*yg Dg(xg — yi) ] (VE).

=g

Note that we have a plus sign here in contrast to (>15.2.4), since also the factor /¢ in the generating
functional from (>17.1.1) has the opposite sign as back then. This shift yields (using the abbreviation
Gg =0 —m?)

1
Lg—]¢p = _E(d” —Ig)Gg(p' —Ig) —J(¢" — Ig)
1
= _E((P’GE(P’ — @'Gglg — IgGgd" + IgGelg) — Jp' + ] 1.

Since D appearing in I is the Greens function of Gg, just as iDr appearing in I was the Greens
function of G in (>15.2.4) by exactly the same derivations as back then we find

¢'Gelg = ¢'J, IgGgd' = ¢'), IgGglg = JIg.
Thus,
1 I I I ! 1 14 14 1 I 1
—J¢ = _E((P Gedp' =29 +]Ig) —J¢' +]Ig = 5@ G 5]l = Lgl¢'] +5J1g.
Thus, by this shift, the generating functional of (>17.1.1) can be brought into the form
1
Z[]] = ID(P €xXp (_fd4x5 (LE _](XE)¢(XE))) = fqu’exp (‘f d*xg (LE[¢’] + E]IE>>
1
= Z[0] exp (_Ef d*xg f d*yg ] (xg) Dg(xg — )’E)]()’E))-

Here, the L part was absorbed into Z[0] and the /I part was explicitly written. Thus, by the formula
from section 14.2, we find

= Dg(xp1 — Xg2)

1,0, 6 §
(QIT ¢ (xp1)p (xp2)12) = [o](‘laf(xm))( 61<sz>> Il

_ elke(xp1—xE2)
f d*kp————
kg+m

The derivation of the last equal sign is exactly the same as in (>15.2.5). In three dimensions this
integral can relatively easy be evaluated:

ixk

k‘l

X ixk cos 6 _ e—ka 1

l X
37 2
fd k T2 (2 )3f dk k f dcos 8 Zrm (271)2]0 dk k ix Tz

1 oodk k elxk -0 ik k elxk 1 [5S) " k eixk
~(2m)2ix fo kZ +m? fo k2 +m?2)  (2m)%ix f_oo k2 +m?

where we have turned k — —k in the second term of the large bracket. Closing the contour above in
the complex plane, there is one pole k = +im enclosed. Using residues theorem from the footnote on
page 26, we find

iE-aZ 1 k eixk
a3k omi (ke —i
f R rmE - o e Im) G S eS

e -mx

T anx

In our four-dimensional case the angular integral of spherical coordinates would be a bit more
complicated, the property e *™ would, however, not change:

(QUTP(xp1) P (xp2) Q) ~ e MxE1—XE2
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17.2 Wilson’s Approach — Effective Lagrangian

17.2.1 Functional Integral over Fourier Components of Fields

Technically, the translation from D¢ (x) to D¢ (k) works as follows. Our definition of functional
integration from (>15.1.3) was constructed for a one-dimensional function x(t); we discretized t into
N steps t; with spacing €. Then, we integrated over any possible value x(t;) at one of the fixed times
t;. Finally, we considered the limit N — co,e — 0.

The role of the functions x(t) now play the fields ¢(x). Therefore, we discretize x and use many
discrete points x; instead, which form a lattice in four-dimensional space. Let their spacing be 2r/L,
where L¢ is the space-time volume. We now can use discrete Four transformation, where we have a
sum instead of an integral:

1 ;
B0 =77 ) plkn) ek

We assume ¢ to be real, such that ¢p(—k,,) = ¢*(k,). Thus, what we actually mean by a functional
integral is

Do) = | [dgpn = | [ detkn) = Doch.
The spacing being 2m/L, in reciprocal space each discrete momentum point k,, occupies the space
A%k == (2m/L)%. Thus,
B = gy Bl et LK S ethn B [ 4t gy e < 90
e n (2m/L)4 n (2m)4 ’

n n

where the last step represents the limit L — oo (that is, the spacing goes to zero: 2/L — 0).

Thus, the individual terms in the Lagrangian can be given in terms of the Fourier components as
follows:

% f dx (0*¢p)* = % f d%x ( f dk (—ik*) ¢p(k) e-ik‘x>2
=~ [ 4 [ @tk atq g, 90 e

1

2) ]
= —5 [ 4R d'q kg, p0B(@) @) 6k + ) = 5 [ AR IpGOP,

2
m 1 —
—f ddx ¢? = —fddk ()2
2 2
The term ~ ¢* can be transformed in the same way. Because it is shorter, we continue to write the

exponential in the real space, however, to integrate over D¢ (k) we keep in mind how the exponent
looks like in Fourier space.

17.2.2 Lagrangian in Terms of the two Fields with low and high Momenta
We want to replace ¢ by ¢ + ¢ in the Euclidean Lagrangian (dropping the index E)

1 m? A
L==(0*p) +—¢p? +— o™
S (049)? + =92 + -9
Let’s do this replacement term by term, starting with the kinetic term:

1 1 ~\2 1 1 ~
5(09)? - = (94(¢ + §)) =5 (3"$)* +(0")".
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Obviously, there is also a term (3% ¢) (6“(13) when expanding the square. Very similar to the evaluation
of [ d*x (0#¢)? in (>17.2.1), when we Fourier expand the fields, we eventually will get a §-function
8(k + q), where k and q are the momenta of the Fourier expansion of ¢ and ¢ respectively. By
definition of ¢ and ¢ the condition of k = —q can never be met, which is why this term vanishes
(underneath a d*x-integral).

For the same reason, the term ¢¢ disappears also in the mass term:

m? ..

m? m? 2 m?
7¢2—>7(¢+¢) =7¢+7¢-

Finally, the interaction term yields
Aos A A, 33 232 73, 34
0 o (9 +0) =1 (6% +49°h + 69747 + 49* + $*)
1 T .. 1 .. 1 1 .
— a4 33 Zh2h2 L S AB3 4 R4
/1(4!(15 +6¢ ¢+4¢ ¢ +6¢¢ +4!¢ )
Thus, the Lagrangian becomes

1 ~ z T .. 1 . 1 1.
LIp] - LIg) +5 (40)" + 5§ + A(26%6 +76°07 + < 96° + . 8*).

17.2.3 Propagator of the High-Momentum Field
We will treat also the mass term as a perturbation (if this is surprising, see (>16.3.3)). We have found
the propagator of a kinetic term like (9#¢)? in the Euclidean Lagrangian already in (>17.1.2) to be!
eik~x

k%~

Dg(xg) = Jddk

Since the mass is treated as a perturbation, the propagator is massless. We define the propagator in
momentum space by

(BUOF@)) = f dx dly e~#*%e~PY Dy (x — y)

X . eiQ'(X—Y)
— fddx ddye—lk-xe—lpy ddC_[ 5
bA<|q|sA
dtg I dtg
= —- d*xd*ye ik=q)xo=ilp+a)y = — (2m)45(k — q) (2m)?8(p + k)
bA<|q|sA bA<|q|sA
d
_ (2m) i(zk +p) o),

where O(k) = 1 for bA < k < A and 0 otherwise.

17.2.4 Effective Mass Correction
When we expand the exponential to first order, there will be a term

A -
—{external fields d)}Zf d%x ¢p2¢?,

where the x-integral comes from the Lagrangian. Since only ¢-fields (in contrast to ¢-fields) appear
as external fields (we assume that the momentum of external fields is always lower than bA), is this

1 We dropped the indices E here, but the coordinates are still Euclidean. Well, to be honest, we also dropped
an an overall minus sign. Peskin&Schrdder does not have this sign anywhere. I will simply drop it here. I hope,
it’s not too important ...
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term only two ¢-fields appear. Due to Wick’s theorem, they will pair and form a propagator; this
propagator we have computed in (>17.2.3). Thus, ignoring external fields, we find?!

—5[ 0267 = -1 [ atxatkatp 9 (B1IGEN e

A _ stk +p) ., . . A _ 1
- __ d d A= H2 tkx,ipx — d d 2 _
4dedkdp¢>(x) 2 et Xe 4jdxdkd)(x)kz
1 A -1
= —Efddx ¢2(X) (Efd4kﬁ),
=:Am?
where
oz A dik 1 Q JA k14 q [kd‘Z]A A1 2p9? [kd‘z]A
m-=3 X2 " 202m)8 o 0mndla= =2 0n)e _
ZbAS“dSA 2 20@2me )y, k2 22m)|d 2], 2(2m)4r(d/2)|d 2],
d_
1-b ZAd‘Z.

- (4m)¥2r(d/2) d-2
Here, Q is the surface of a d-dimensional sphere from section 12.6. Note that Am? > 0 ford > 2.

Thus, to the first order in the expansion of the exponential, the ¢2¢2-term is just a correction to the
¢-mass term. If we draw ¢-propagators as a double line, this vertex look as follows:

17.2.5 Effective Interaction Correction

Consider a diagram with two of those vertices:

Obviously, this is a contribution of order 2. It comes from a second order expansion of the exponential
and contains two term ¢2¢2. Specifically, this dagram is due to the term

2

1/ 2 -
{external fields ¢}5(_Zf dx ¢2¢2> -

The factor 1/2! is the factor of the second order Taylor expansion. Again, we neglect the external fields
and we find

1/ 2 L) 1A 52008
(-3 f “x4’F) =575 f dx dly §? ()2 () B2 (OB ().

There are now two relevant contractions: For the diagram above, only ¢-propagators from x to y (the
position of the vertices) contribute. This diagram contains no propagator that returns back to the same
vertex (in contrast to the diagram we considered above). Since we have two fields ¢ (x) and two fields
@ (x) there are two possible equivalent contractions. We can just one of them and, since they are

1 Since the integration over momenta are always implied to be in the correct region, that is bA < k < A for
¢ fields, we can set O(k) = 1.

Note also, that we to not replace A2 — u*~%2; thus, 1 is not dimensionless in d dimensions (see section 13.2),
which is no problem in the present computation. In the whole Wilson’s Approach Computation, the explicit
factor u*~4 is simply of no use.
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equivalent, simply add a factor of 2 for the other. To specify the contractions, we expand the ¢-fields
in Fourier space:

1/ 2 )\
Z(__fddx ¢2¢2)
= 2 [ atxaty gc080)
(dFs dPy () B(py)) eks72e ) (K, dp, (k) B(py) e el
= 2 [ atxaty grc08°)

a da
(ddkl dd (Zﬂ) 6]&’;1 + pl) lkl'xeipl'y> <ddk dd _ (27[) 6]&’;2 + pZ) lkz'yeipz'x)

de kl
k%

l(k1 k2)-(x-y)

= 2 [ atxaty 0w n

Since we are only interested in situations, where the external particles have small momenta compared
to the virtual ¢-particles, we can assume that y ~ x (for very large momenta of the virtual particle,
the distance between the adjacent vertices becomes very small). Also, we know from momentum
conservation that k, = —k;. When we plug in those relations into the formula above, we are left with
two integrals, d%y and d%k,, to which the integrand is a constant. Since one of those two integrals is
spatial, the other reciprocal, they will just cancel each other. Thus, we are left with

1 A d%k AL
(- Ay H25 d, 44 1__ =~ d, h4
2!( 4fdx¢ 2142fdx¢(x) 4!fdx¢(x)’
where we introduced the abbreviation
242 dik 322 Q, (A ke 32 1 2n/2 1 A
AN = —4! f —:———f —_— [ kd_4]
2142 k4 2 2md ), k* 2 2n)er(d/2)\ld - oA
T35z bAsfklsA
==
312 1_bd_4Ad—4 a-a 322 In1/b
= -— —_ —_— .
(4m)a/2T(d/2) d -4 (4m)z "

To find the final result, we needed to expand the numerator as follows for small x := d — 4:

1-b*=1—e*"bx1—-(1+xInb)=—xInb=xIn1/b.

17.3 Renormalization Group Flows

17.3.1 Rescaled Effective Lagrangian
Applying the rescaling

k':==k/b, x' = xb,
to the action
1 2 1
fddx Leff = fddx (E (1 + AZ)((’)#q,')) + E(7712 + Am2)¢2
1 4
+5; (A + AP +AC(0,9) +ADPE + -~ )

we find, using d%x = d%x’ b~ and 0, = 6[( b,

1 1
f Alx Lo = f d%x’ b=¢ (5(1 + AZ)bZ(a,;¢)2 + E(m2 + Am?)¢p?
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1
+ (AP + ACH*(3,p)" + AD® + - )

To bring the kinetic term of the effective Lagrangian into the usual form ((3#(]5’)2/2, we also rescale the
fields according to

@' =+/b2 41+ AZ).

Then, we find

f d%x Lot = f d’x’ (% (0u0")" + mT’qu'Z + i—’!qb"* +AC"(9,¢")" +AD'¢® + - )
where

m'? := (m? + Am?)(1 + AZ)"'bh 2,

A=A+ A1+ AZ)~2p4 4,

AC' = (C + AC)(1 + AZ)2b¢,

AD' := (D + AC)(1 + AZ)~3p?a-6,
Note that, in case of the original Lagrangian that we considered here, C = D = 0.

17.3.2 General Transformation Behaviour of the Coefficients
The statement is: The coefficient of an operator with n powers of ¢p and m derivatives transforms (in
the vicinity of the free-field Lagrangian) like

(new coefficient) = b (old coefficient), with a=d,,—d, d,,=n(d/2—-1)+m.

We will “proof” this by the examples of the four terms from which we already derived the
transformation behaviour:

m?¢? = n=2m=0 = a=dyy—d=-2 = m'?=m?b7?
Ap* = n=2m=0 = a=dy—-d=d—4 = A =21b%"
COP)* = n=4m=4 = a=dy—-d=d = (' =Ch%
D¢® = n=6m=0 = a=dge(—-d=2d—6 = D'=Db?°

The results on the very right side we already got before in section 16.3. Thereby, we assume that the
formula is correct.

17.3.3 General Mass Dimension of the Coefficients
From (>16.1.3) we know that in a theory with a kinetic term (E)M(;b)z in the Lagrangian, the field has
the mass dimension

9= 22

2
Thus, an operator containing n fields and m derivatives has the mass dimension
d—2
2

n +m,

since [6”] = 1. For example, ¢2(aﬂ¢)2 has n = 4 fields and m = 2 derivatives. Thus, d,,, is just the
mass dimension of the operator.

Since the Lagrangian has mass dimension [£L] = d, the coefficient of the operator has mass dimension

d = [L] = [coefficient] + d,,., = [coefficient] = —(d,, — ).
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17.4 Callan-Symanzik Equation

17.4.1 Derivation of the Callan-Symanzik Equation
Consider the n-point function

G™({x;} A, 1) = (QUT ¢y (x1) -+ () 1Q) = Z7VHAIT P (x1) -+ () |Q),

with renormalized fields ¢,- and bare fields ¢. We want to investigate a shift in the scale M, which also
induces shifts to A and VZ:

M->M+68M, A-A+61 VZ-VZ+VZon.

We denoted the shift of VZ as VZ&n, where we wrote a factor of VZ explicitly for convenience. Since
the bare n-point function is independent of M (and also 4, Z, since it depends on A, and the bare fields),
it should be invariant under this shift and we find

0 = §(QUTP(xy) -+ px)|Q) = 8(ZV26 W) = ¢MWsZ™2 + 272 56

aG™ aG
— ), 7n/2 n/2
G"nzZvedn+Z <6M 6M+61M>

where we used
-1
§Z™? = 6(\/7)n = n(\/f)n SVZ = nzn/28y.
——
:\/7617
We can bring this equation to its usual form by substituting the definitions

52 &n

pF=Mey  v=Mgp

specifically, we plug in 61 = 6M/M B and én = 6M /M y and multiply the equation by M /6M:

0=nyGc™+M

ac™ ac™ 0 Kl )
R - _ n
am P an (MaM+ﬁa/1+”y>G :

In general, the functions § and y could depend on 4, M and A. However, they are - by their definition
- dimensionless and thus cannot depend on M and A individually but only on M/A. Also, A, M and Z
are independent of the cutoff A, thus also # and y must be independent of A. What remains is only the
dependence on A:

d d
— — M) ({4 _
(M 6M+[>’(/1) al+ny(/1)>0 ({xi}, A, M) = 0.

17.4.2 Renormalized 4-Point Function
The amplitude of a process p;p, = P3P, in ¢p* theory is given by

IM (p1p2 = P3pa) = >< + >O< +Ej +D\ +>8< +0(2%)

According to the Feynman rules in section 8.1, the single vertex simply contributes —iA and according
to the counter term Feynman rules the counter vertex simply contributes —ié;, which will turn out to
be of order A2.

k
i) = 50K
ka
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Let the amplitude of the s-channel diagram be (—i1)?V (s), and we find from the Feynman rules
[ [
k2 —m2(k +p)2—m?

—_iN2
i (s) = ;’D f d*k

Note, that s = (p; + p,)? =: p2. The t- and u-channel diagrams are identical, except that s will be
replaced by t and u. Thus,

iM = —id+ (—iD2i(V(s) + V(@) + V(w)) — i6;.

Our renormalization condition for the full vertex (which we are computing here) requires iM = —il
ats =t = u = —M?2. Thus, —i8; needs to cancel the three V-terms for this value of the Mandelstam
variables and hence we have obviously

—i8; = —(—id)? 3iV(—M?).

To move on, we should evaluate the integral in V(s) = V(p?). In dimensional regularization, we
introduce a Feynman parameter (11.2), shift the integration variable by substituting k = — xp,
perform a Wick rotation ({° = il2) and perform the momentum integral (13.2):

i — 1 1
V(p?) == f d%k
) 2 k? —m? (k + p)? —m?

i (? - 1
== | dx|d%
2 fo xf (x((k + p)2 = m?) + (1 — x) (k2 — m?))’

it _ 1
_ = d
2[0 dxfd k(k2+xp2+2xk-p—m2)2
it - 1
=—J dxjddl
2J, (U —xp)? + xp? + 2x(l — xp) - p — M?)?
it 1 it 1
=—f dxfddl_ =—f dxfiddl_
2J, (I2+x(1-x)p?—m?)2 2, E(—l,§+x(1—x)pz—mz)2

1 [t _ 1 1Y AY2721(2-d/2)
=——J dxjddlE—z =——J dx -
2), (I + D)2 2), (4m)d/2  T(2)

where A := —x(1 — x)p? + m2. In the present context, we are considering massless ¢* theory. Setting
m = 0, we find

8, = (=iN)? 3V(=M?) = —

3(—id)? 1d r2-d/2)
Wfo @M

Using the identities from 13.2,

-0 2
r@-d/2)=T@/2) =2y,

> € €
AY/2-2 = pe/2 201 Zind, (4m)742 = (4m)/2 2 = (1+ I 4rr)),

(4m)?

we can evaluate §; in the limitd — 4:

5y = —32((_4—?))22(1 +§ln4n)f01dx (é—y) (1 —%lnA)
= _32((_4—?))22[()1(135 (é—y+ln4n—ln(x(1—x)M2))
312

" 204

2 1
<Z—lnM2 —y+ln47t—f dx ln(x(l—x))).
0
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From 8.2 we know that the S matrix equals iM times the overall momentum conservation §-function
and the alternative LSZ reduction formula from 7.5 then tells us (recall that we consider the massless
theory)

i

. . . ) i
GO ({p M, 2) = f (Id*x;) P11 eiPa g=ips¥s g=ivas G ({x,}, 4, M) = (HiF>S

= (Hi #) (im (2m)*8(mom cons)),

i

where G® ({p;}, M, 1) is the 4-point function in momentum space. We can drop the §-function by
assuming it is fulfilled! and are left with

i i
CP(p3 M) =im I, 7= (—ir+ (iN2i(V(s) + V() + V(W) — i) nip—z.
i i
For better overview, we can give this equation as
2
C® = A(—id— 2B —i8;)), 8 = CA? (E —InM? + D)

with the abbreviations

C 3
ATl B=i(VO+VO+VW), C=g00

1
D:=—y+Indm — f dx ln(x(l — x)).
0

=_2

17.4.3 Evaluation of B
Only §; depends on M, thus

) a5 )
9w _ _-_l)z_- 2 9 — oiarg2
Moo MA( i1 iMA CA? 5 (=2In M) = 2iACA*.

Let’s assume for now, that the first contribution to y is at least of order A2, thatisy = 0 + 0(42). As
we will see in (>16.4.4), this assumption is consistent. Obviously, the leading order of G® is the order
A. Thus, up to order A2, the term nyG® is zero and the Callan-Symanzik equations reads

d d 0
— . _ (4) 3) — 27 2 — @ 3
0 <M6M+ﬁ(/1)a/1>c: + 0(23) = 2iACA +ﬁ(/1)a/16 +0@%).

Since the leading order of G is simply ¥ = —iAA, to leading order,
2

0=2iACA2 —iAB(D) +0(13) B(A) = 2CA2 = % +03).

17.4.4 Renormalized 2-Point Function
If —iP? is the 1PI of the scalar field, then its full propagator is

[o%] n

i i _ i i . I

p?2 —m? +p2 ) (_ﬂ)z)pz —m? +oe = P2 —m22<(_l?2)p2 —m2>

n=
i 1 i

= 2_.2 ] = 2 _.2_ oz
p ml—(—i?z)ﬁ promi=P

LI don’t really know, how valid this is, but in Peskin&Schréder the §-function is suddenly gone.
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To order A, two diagrams contribute to the 1PI:

—iP%(p*) = Q + ——+0(?)
Using the Feynman rules from 8.1 and 15.6, in the language of mathematics, this reads

1 _
—iP*(p?) = —ir- —f d%k +i(p26; — 6)
iAT(1—d/2)

T2 (4mas

i
k2 — m2
(mH)Y21 +i(p?67 — b)),

where we performed a Wick rotation and used the integration formulas of section 13.2:

i _ (m®)2r(1-d/2)
fddk = lfddkE k2 m2 (47T)d/2 1_,(1) .

Applying the renormalization condition P2(—M?) = 0 yields
IAT(1—d/2)

~iPH(=M?) = = 5 (I (M2, = 6,) =0,

Thus, we need §; = 0 and

iAT(1—-d/2)

s == 2yd/2-1
l5m—2 ) (m*) .

Since the first term in —iP?(—M?) is independent of p?, this conditions also ensures —iP?(p?) = 0 +
0(A?) for any p2.1 Of course, P?(p?) can have contributions of higher orders, but in full generality we

have found that
QO eno

Thus, the full propagator G ? receives non-vanishing corrections only at order A2 and above. For the
massless theory, this means

i
G@ =—+00%.
P

Thus, the derivation 3G® /M is at least of order A2 and hence, so is the first term in the Callan-
Symanzik equation. The derivation G ® /91 is at least of order A, thus the term 8 dG® /1 is of order
A3 (since B is of order A%). Denoting only the leading orders of the terms, the Callan-Symanzik equation
for the 2-point function reads

023 +0(3) +2y 6@ = 0.

Solving for y, the leading order will be A2.

1To not get confused, let’s see what happens if the first term of P2 would depend on p?. Then P? would
have the structure
—iP2(p?) = f(®*) + i(p*6z — 6m).

The renormalization condition would give us

—iP?(=M?) = f(—-M?) + i(—-M?6, — 6,,) = 0.
If, for example, f is a linear function, we could not conclude §; = 0. In general, this condition fixes §, and
8,, to be some specific functions of —M? (but not of p?). And therefore, —iP?(p?) would vanish only for
p? = —M? but not for general p2.
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17.5 General Expressions for B and y

17.5.1 General Expression fory
When we examined the effects of a shift M - M + §M in section 16.4, we found that also VZ is shifted
and we defined a shift 67 as follows: vZ — vVZ(1 + 6n). This is equivalent to

\/7/

VZ =VZ1+68p) o o =———1

Since a shift in M induces a shift in vVZ, Z must be a function of M and thus, \/Z(M)' = \/Z(M + 6M).
From the definition of y from section 16.4, we therefore find

M M (,/Z(M + M) 1> M (JZ(M + M) — \/Z(M)> _ MaJzm)

=W677 ~ oM [Z(M) [Z(M) oM _\/ZW
M 1 0zZ(M) M oz

“VZ2vZ oM 2Z0M
Using the definition of §; = Z — 1 from 15.6, we find to leading order in the coupling constant (note
that 6, depends on 1)

14

M a(1+68) M 35, Mag,
T 20046, oM T 2(1+6,)0M 2 0M

14

Alternatively, we can also get this formula by a more explicit analysis as follows. Since M enters only
through the renormalization conditions, only the counter terms 8y depend on M. The leading order
contribution of the counter terms to G® is the counter propagator. In its amputated form, it simply
reads ip?8,, as we know from section 15.6 (there is no &,, in a massless theory). Including the adjacent
propagators, this term contributes

i i
G@ = (terms without counter term contributions) + — ip?8; —
p p

+ (higher order counter term contributions)

i i
= (terms independent of M) + 7 ip%8, 7 +0(13).

Particularly, the first appearance of §, is at higher order of 4 than the first appearance of §.

Now consider the Callan-Symanzik equation:
(Mi+[>’i+ 2y)0(2> =0
oM aA '

The 2-point function has no term of order 4, as it can only have an even number of vertices. Thus, since
we know from 16.4 that the leading order of f3 is A2, the leading order of the -term is of order A3 (the
order A° in G® vanishes because of the derivative). Thus, to order A2 we can neglect the 8-term and
find

i
p?

_ Maé,

) 9 /i
-l @ =y _Maoog
0=MzG® +2y6P =M ( = 33"

i i

M ?Lpzdz >+2y? = %
In (>17.4.4) we ended up with §; = 0. However, this calculation was only performed to order A. In
order A2, §; will be non-zero. Thus, also the leading order of y will be A2, in consistence with our result

from 16.4
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17.5.2 General Expression for B
When we examined the effects of a shift M - M + 6M in section 16.4, we found that also A is shifted
and we defined a shift §4 as follows: 4 - A + §A. This is equivalent to

A=21+62 = A=1—-A

Since a shift in M induces a shift in A, A must be a function of M and thus, A'(M) = A(M + 6M). From
the definition of # from section 16.4, we therefore find

M(SA M/l’—/l_M/l(M+6M)—/1(M)_M6/1
B =M M~ 5M M

Using the definition of §; = 1,Z? — A from 15.6, we find to leading order in the coupling constant

oA 9 0 ; 0
B = MO_M = M_(AOZ — &) = M—(lo(l +07)° = 6;) = Ma—M(lo(l +267) — 6;)

9
—M—( 8) + 2248,) = M azw( 5, + 22&)

In the last step we exchanged A, — A, which is valid to leading order. Also, we introduced a sum over
the external particles of the 4-point function of ¢* theory. Since there is only one particle type in ¢*
theory, all §; are equal and independent of i, thus Y;; §; = 46,. For other theories like QED, however,
this formula stills holds when we sum over the external lines and use §,; for the renormalization of
the particle type of external line i.

Alternatively, we can also get this formula by a more explicit analysis as follows. To find the general
expression for 8, we need to start with a general expression for the M-dependent terms of G®. In
general, there are two contributing counter terms to order A?: The vertex counter term —i§; and the
propagator counter term ip?8; (recall, m = 0 = §,, = 0), which can be placed at each of the four
external lines (therefore the sum over the external lines i):

>g< Z>< —idy + (- IA)ZIM

On the right-hand side, the external propagators where neglected; we therefore need to add a factor
I; i/p? to the 4-point function. Note that we found in (>17.4.4) that §; has order A term. Therefore,
the second term of the expression above is of order A3 and can be neglected to order A2. However, the
coincidence that the order 2 of §; vanishes is only true for the special case of massless ¢* theory. We
will continue to write this term as if §, where of order A. For final results, we can still set this order to
zero. Thus,

G® = (terms independent of M) + (=i6;) + (—iA) Z(—é‘z) Hi#

i
06 (1 )9 (_is +'/125
—1 = p— | — — .
oM ipE)om\ TR T LL07
1A

Note, that ¥'; 1 = 4. The leading of G® order in A is simply —iA I1; i /p?. Thus,

aGW - i
ar  ip?

Also, we know from (>17.5.1), that

M35,

V=0 amr
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Now, we have all terms of the Callan-Symanzik equation together and find

0= (Mi+ﬁi+4y)6(2)
oM daA

()2 (s +'/125 + L)) o (4 M2
- ipiz oM 1oy l i VA .8 l ipiz 2 oM l ipiz
o={m2(s ,125 e (AMON s
L3 = B — — _
oM\ Lz B 20MLy?
L L

% MO Ny 0 5+'1§6

= = -\ — _— = — — — .

B oM 2 aMZL.? oM\ * 24077
l l

In the present case, where all the external particles are equal, also all the §, are equal and we can
simply replace ),; = 4. However, for QED, externals particles can be electrons or photons and then §,
depends on i.

Taking &, = —CA%In M? + (term independent of M) from (>17.4.2), where 2C = 3/(4m)?, this
formula gives us for ¢* theory (where §; = 0 to order 1)

B = MiCAZ InM? = 2C 22
oM '

just as we found in section 16.4.

17.6 Callan-Symanzik Equation for QED

17.6.1 Derivation of the Callan-Symanzik Equation for QED

We could derive the Callan-Symanzik equation for QED in the same way as for ¢* theory. However, it
is useful, to go an alternative, if still similar, way. Let’s again start with an (n,, n3)-point function of n,
fermions and n5 photons. It is connected to the bare (n,, n;)-point function by

G2m) ({x;}, g,m, 1) = 25725265 (i}, go,mo),

where g = e is the (renormalized) coupling constant, m the (renormalized) fermion mass and gg, m,
the bare quantities. From the definition for §; in section 15.3, we see that

Yo Zo\Z3
Zy =2\ 23— = g=—>"90
9 Zy
(here, \/Z5 == /Z5(0)). We know from the end of section 13.2, that g, has mass dimension (4 — d)/2.

To keep g dimensionless in any dimension, we modify the renormalization for the present purpose a
little bit:

Zo\Z5

where u is some mass scale. Note, that in the case of d = 4, the two renormalization rules totally
coincide. We take u as exactly the u from section 13.2. This y appears in computations of dimensional

regularization and thus it occurs in the regularization parameters § and hence also in Z; and the
G("z'n3)
0

9=z Vg,  Z:

renormalized mass m. On the other hand, is 4 independent, and therefore, we can write

d d
0= ‘uaGénz'nﬂ = Md—u(Z;2/2Z§3/2G(nz’n3)).
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Consider
U— d Z L/Z ni/2— 1dZ an/zzﬁdzl’
du 2 ¢ d,u V' 2Z;du
96 M2m3) dm

aG2ms) dg
P = —

lliG(nzfns) — ‘uiG(nzﬂﬁ + u—-
du au dg du
Hence,
0= Z;LZ/ZZ;13/2 (Mi+n2 pdZ, nzpdZs #dg d ”dm ] )G(nznﬁ.
ou 2 Z, du 2 Z3 d,u duaog du om
Defining

1 p dZys _pdm . dg
Ym'_mdﬂl B'_ ‘ud‘u

Y23 = EZ,B du

we arrive at the Callan-Symanzik equation

0 0
(.Ua_"‘nz)/z +n3y3 +'86 tMym o )G(n2n3) =0.

17.6.2 General Expression for B andy
Using the relation between g and g, from (>17.6.1) as well as the fact that g, is independent of u, we

(4-d)/2
g+Zut=2 dg)

du
du

d d dzZ
O=u =pu—(Zu@D/2g) = (4—d)/2 7
U0 =g (Zu 9) = ¥ g+

find

= —udg/du, we find
du(“‘d)/Z) udZz 4—d
IR _ (142 E-dy

Solving this equation for 8
Zdu 2

dg 1g az
-8 __ M (¥ a-apz,yy
A H du  Zu@-a/2\du H + du

using its definition from (>17.6.1), we find

Expanding Z 1
3 1 3
(1+6)(1-6,+0(g%) 1-58;+0(g)

Zo\Zs (1481 + 85

1
= 1+61—62—§63+0(g3).

Note, that §; is of order g2. Thus, using4 —d = €
4—d € d 1
F28 o<g3)> (— tu(8-8, - 563)> +0(g"

L R
F=9\7a ( 17%273 3) 2
To the given order, we could neglect Z = 1 + 0(g?). Usually (if 8 is not multiplied by a term ~ 1/¢),

we can also neglect the first term, leaving us with
d 1 .
p=oug (68 -78) +0(g"

The y, 5 can obviously be given as
d(l + 52,3) _ Ed52,3 +0(gh

1 s dZ,3 1 p
V23707, du  21+6,5  du 2 du
(¥ is not given here yet).
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17.6.3 Results for B andy
In (>16.4.2) we found (g = e)

6, =06, = —8g—< + f1n1te)

4 g 2
63 = —3 (4n)2< + flnlte)

(We can choose a subtraction scheme, where the finite terms are dropped; then still all infinities are
subtracted by the §’s).

To leading order, we can set Z = 1 to find (using e = 4 — d)

dg d—4
uo = ud—(g 27 @) = p— (g u2) +0(g%) = ——gou ™2
H =g+0(g%)
= _Eg +0(g°).

Thus, pdg?/du = —eg? + 0(g*). Now, recall Z=1+6; — 8, — 65/2+0(g3) =1-63/2+ 0(g?)
from (>17.6.2). Thus,

dz' 4 1 d uds,
_, 3y _ 3y _ H%9% 3
TR _153+0(9) “an (1+ 63)+0(g) 2 dn >+ 0(g%)
2
(4 1 2\udg® 3_412—Eg2 9 2
_< 3 (4m)? )2 4 oW ( 3(411’)215) 2 T0W) =t oW

Finally, we can compute the f function to order g3:

dg dpa-2/2 dz=%\ ..
ﬁ=—u@=—udu(92 plam02) = —goz 7 ( W) "9 \F pla=nr2
2 3
— -1 _E (a-4)/2) _ (d-4)/2 9 3 9 4
= —90Z ( i ) gouzzg 2.2 T 0@ 29 Z15—5100gY)

3

_¢ _ 9 4

Using udg?/du = —eg? + 0(g*), we find

_ud62 1 udg 1 —eg . g° .
Y2=5 du ~ 8m2e2 d,u 8m2e +0(g )_ +0(g )
uds. 4 1 2udg? 4 1 2-—eg? g°
b e i ot T ot =+ 0",
2 du 3(4m)2€e2 du 3(4m)2e 2 12w

17.7 Evolution of Coupling Constants

17.7.1 New Form of the Callan-Symanzik Equation

The leading order of the 2-point function of ¢* theory reads ¢® (p?) = i/p? + ---; thus, its mass
dimension is —2. Therefore, we can write it in the form

O @?) = pl—zﬂ—pZ/mZ).

Let’s use the variable p := ,/—p? instead of p. That is, p? = —p?, but p is a scalar and p a four-vector.
We then write G® (p) instead of G @ (p?):

176



i i
G (p) = ?f(—Pz/mz) = ?f(—#”z/mz)-

We have absorbed minus sign from the substitution p? = —? into the unknown function f. Let’s see,
what a derivative with respect to p instead of M would give us:

9 2i L (2
%’@G(Z)(ﬂ’) ”ap( f= pZ/M2)> (p31>f(—472/M2)+z7;%< Mff'(—ﬂ’z/Mz)>
=-269(p) - Wf’(—:pz/Mz)

S PN ==260) - o D)

Thus, we can write the derivative with respect to M as
9 i i 2p%  2i
) — _2M2=M I_ZMZ — I_ZMZ
Mo 6P (@) = W_Zf( p*/M?) ;v_zf( pIM) = f P /M)
0
— —26@(p) — @ ().
G @) - py p ¢ (@)

and the Callan-Symanzik equation for the 2-point function as
0= ( o+ ﬁ(/l) 7t 2y(A)> P (p) = (— apt ﬁ(/l) =t zm)> P (p).

17.7.2 General Solution of the Callan-Symanzik Equation
To find the general solution of the Callan-Symanzik equation, let’s start by simplifying it. Writing the
momentum derivative as

9
O(W/M) ~ aIn(p/MY

the Callan-Symanzik equation reads

= (p/M)

0 0
S — — =2 2)6@(p) = 0.
(Gintoriy AW 33~ 2@ +2) 6@ @) =0
Now let’s, for simplicity, substitute t := In p/M and v := —f and p := 2y — 2 as well as x := 4. Then,
we can also replace 6@ (p, 1) by D(t, x):

0 d 0
(61& + v(x)— — p(x)) D(t,x) =0 = %D(t, x) = p(x)D(t,x) — v(x)aD(t, x).

This equation has a beautiful hydrodynamic-bacteriological analogy: It describes the density of
bacteria D(t, x) at time t and position x along a one-dimensional tube. The tube is filled with water
that flows with velocity v(x). Above the pipe, heat/light sources are placed at different positions, so
that the growth rate of the bacteria p is position dependent.

Consider an arbitrary position x,. The change in bacteria density D /dt|,, at this position equals the
growth of the bacteria number pD|, on this position. But also, since the bacteria are carried by the
flowing water through the pipe, the change dD/dt|, will also depend on the density at neighbouring
positions. Let's assume v(x,) > 0, such that the flow is directed to higher x. If 9D /x|, is positive, on

the left-hand side of x, there are less bacteria than at x,. Thus, we need to subtract v dD /dx from the
change, to take the flow into account.
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Take an element of the fluid, which is inhabited by a certain number of bacteria. Let this element be at
position x at a certain time t. Let then X(t, x) be the position, where this element has been att = 0.
Note that the larger t is the smaller is X, as well as X(0,x). We then integrate back in time to find
x(t, x):

0
x(t,x) = J dt’ U(J?(t’,x)) S %f(t, x) = —v(f(t, x)), with x(0,x) = x.
¢

By separation of variables, we know that

dy(x) _ _d—y X2 _ y(x2) L
dx f(y(x)) = dx = f) = fxl dx = v[_';/(xl) dyf(}’)'

In our case, this means

Kl t x(t,x) 1
—x(t,x) = —v(x(t,x = dt’=—f dx' ——.
= x(t,2) = —v(2(t,0) L e

If we differentiate this equation by x, the left-hand side vanishes and for the right-hand ween need
Leibniz’s rule (recall Xx(0,x) = x):

4 #(tx) _,L__< 1 0x(tx) 1) 0x(t,x) _v(x(t,x))
dxfx xv(y?’)_ v(f(t,x)) Ox v(x) = ax  vx)

0=
Using these relations, we can show that the solution to the differential equation above reads

D(t,x) = Do(f(t, x)) exp (ftdt’ p(f(t’,x))).
0

Let’s check that this is true, by first computing the following two derivatives:

v t

%D(t, x) = W exp (Jo dt’ p(f(t’,x))) + D(t, x) P(f(t, x)),

d 0Dy (x(t, t t d

aD(t,x) = w exp (fo dt’ p(f(t’,x))) + D(x, t)fo dt’ ap(f(t’, x)).
Consider

%ﬁ“» _ py(#(e0) 2 gt' )y (e 0)w(EE ),

9Dy (x(¢,x) Vre 0x(t,x) ., _ x(t,x)

_g%jlz%@@@}%;iz%&@@ﬂga%l

toa ot p(E@ 0)ox(,x)  t o p(x(,x0) v(x(t,x))
fodt &p(x(t'x))‘fo dt 0x(t',x) dx _J; dt dx(t',x) v(x)

1t (@, x)ex(t ) 1 . )
= vl 4 exe e ot ——v(x)(p(x(t,x))—p(x(o,x)))

= —%(p(f(t, x)) — P(X))-

Let’s write all those terms as short as possible and plug them into the differential equation:
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aD ()D+()aD
— p(x v(x) o

ot
oD aD t 3o (%
= _OeXp(“') + D p(x) — p(x) D + v(x) (a—xoexp(---) + Dfo dt’ —SS?)

at
= —Dy v(¥) exp(-+-) + D p(x) — p(x) D
() (Dz,oz)%exp(---) - D%x)(p(f) - p(x))>
= D} v(®) exp(-) + D p(®) — p(x) D + Dy(®) v(®) exp(-) — D(p(E) — p(x)) = 0.

Now, that we have shown that the D(x, t) given above is indeed a solution, we can translate it back to
our field theory problem:

D) =6P(p,2),  Do(x(62) = Go (Ip D)), = ln%,

v=-0, p=2y-—2 x=A

Thus, t = 0 corresponds to p = M. The translation yields

D(t,x) = Do(f(t, x)) exp (Jtdt’ p(f(t',x))>
0

—_— plzp —_
= 6P (p, ) =Gy (A, 1)) exp ( f din(p'/M) (2v(A(p', 1) — 2))-
p'=M
The other formulas, we came across, translate as follows:
Bacteria in a Tube Quantum Field Theory

d - _
Ef(t' x) = —v(f(t, x)) Alp, ) =B (/1(;9, /1))

dln(p/M)
%(0,x) = x AMp=M21 =2
J»t x(t,x) 1 ;7’:;7 Z(p,ﬂ) 1
dt' = — f %' —— f din(p' /M) = f AT —
. i v(®) e X 163)
ax(t, x) _ v(x(t,x)) oip 1) B (j(p'l))
Plugging in the first of these four equation, we can bring the last one into the form

- 1(p, 2 0 0\ -
0= p(10) -0 TLR < (-2 b 2) A

P P J\ _ d d\ -
L ML LI

Finally, let's bring our main result into a more convenient form. One term in the integral in the
exponent of the general solution formula for G® is simply a constant, namely —2. This term yields

! 2

»'=p M
exp (f din(p' /M) (—2)> = exp(—Z(ln(;a/M) - ln(M/M))) =exp(—2In(p/M)) = ?
p'=M

Redefining G, (absorbing M? and spitting out a factor i), we can write the result as

CD(p,2) = 2%00 (1) exp (2 f ﬁ jdln(p’/M) y (/T(ga’,/l))).
=
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17.8 The Running Coupling

17.8.1 Leading Order Solution for the Running Coupling of ¢* Theory
To solve the differential equation for 4, it is actually easier to use directly its integral form

?'=p Apd 1
J din(p' /M) = f dx

p'=M A B (/T')’
derived in (>17.7.2). Using (1) = 34%/(4m)? from section 16.4, this equation yields
»'=p (4m)? (A@d _ 1
dl ! = '—
L _dinG'/m) == L ar =
(47.[)2 1 j.(p,ﬂ.)
n(p/M) ==—| 3|
- A
= Alp,A) = 37

1- (4 )2 ln(gv/M)

17.8.2 Equality to Wilson’s Approach
In section 16.3, we found

A=21- 317 ——1In1/b,
o
where we integrated out all scales from a cutoff A to a scale bA with 0 < b < 1. Our current result
reads

_ A 312
Alp,A) = 37 /1+(4 )Zln(go/M)+0(A3)
1- (4 )2 In(p/M) T
2

31
=1- any? ——In((p/M)~1) + 0(23).

Obviously, A = 1, if

P bA

—=h=—

M A
The correspondence of p < bAand M < Ais quite clear: We have defined the theory at scale M /with
cutoff A, but are interested in scale p/scale bA.

17.8.3 Leading Order Solution for the Running Coupling of QED
The Fourier transform of the Coulomb potential reads

R e*(q®) es 1
V(g) = — = = —_,—Ozﬁ,
lq] [G12 1 —T(q?)

as we know from section 13.5. We also plugged in the formula for e2(g?) from section 13.1.

In section 13.1, we found the full photon propagator - which is the 2-point functions with two photon
fields. It read

My 4] in
pEv@D = V@=p |ZG;53)-
0

@ _ "My 1 Ny 1§12
G, = = —V =
q> 1-M(q?) q> ¢ @ = es
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We consider the massless limit of QED and specify a scale M, at which we “define the theory”, that is,
at which the renormalization conditions are imposed to hold. That is, e, = e(q? = M?).

The 2-point photon function contains only two photon fields and no fermion fields; that is, m = 2 and
n = 0 in the Callan-Symanzik equation for QED in section 16.6, which gives exactly the Callan-

Symanzik equation for the 2-point function of a massless scalar field. Defining g := \/ —q?, such that
g?* = —q* (but g being a scalar, not a four-vector) and changing the scale derivative into a momentum
derivative as in (>17.7.1), the Callan-Symanzik equation reads (note that /04 = —d/de)?

i O 2y +2)6@ =0
%%—l_ﬂ(er)a_er_ Y3+ wy — Y-
According to section 16.7, it has the solution
@ 1 .
Guv (‘Z: er) = ?GOHV (er) exp(--- )

At g = M, we know that e(q?) = e, at ¢ = M%. Thus,atg = M,

e?

g
At g = M, the integral in the exponent vanishes automatically. Also, e, = e, at g = M. Thus,atg = M,
our general solution reads

V(g =

. S 2 . 2
6@ = M,e) =z () - ”e";f—'(— lzflz) = ()=
Also, the running charge obeys (d1 = —de,)
a'=q , elae) 1
L _ din(q’ /M) = - f ey
just as in section 16.7. The B-function is known from section 16.6 to be f = —e3/12m2. Thus, the
equation above yields
ér(g.er) 1 —1 14 (@er)
In(g/M) = 12n2f del —5 = 12n2[ ,2]
e e 2e2l,
e ege)= o7 e :
1= 3In(g/M)

1 For some reason that I do not understand, in this case y is zero. However, since y; ~ d85/0M and 65 =
0(e?) (>16.4.2), this y; would contribute only to higher orders of e than we are interested in. Thus, it is
irrelevant for us, if it vanishes or not.
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18 NON-ABELIAN GAUGE THEORIES

18.1 Feynman Rules

18.1.1 The Yang-Mills Lagrangian
In section 9.3, we found the Yang-Mills Lagrangian

1 _
Lyy = =5 Tr B F* + B(iD = m)¥,

where ¥ = (¥4, ..., ¥y)T. Using as F., = Ejt,, where the generators t, are normalized by Trt,t;, =
1/2, we find (see section 3.7)

1 a /v w(;:
Lyw = =7 EGE + 9D —m)¥.

Here,
Flﬁ, = O#Af,‘ — avAﬁ — gfabc AZAS, D, = au +ig AZta.
Recall thata = 1,..., N> — 1 and t, € CN*V,

18.1.2 The Fermion Propagator
The part of the Yang-Mills Lagrangian containing fermion fields reads

P -m)¥, D, =0,+igAjte.

Since t% is a matrix, unit matrix is implied for the first term of D, that is for the d,, and also for the
term containing the mass m. Let’s denote this unit matrix explicitly as I, since it is the unit matrix in
the space of the symmetry group.

On the other hand, £ is also a matrix in Dirac space due to the y matrix. Thus, the mass term also has
a unit matrix I, of Dirac space implied, which has dimensionality four in the case of d = 4.1

We want to write the expression above in index notation. Using , §, ... = 1, ..., 4 as Dirac indices and
i,j,...=1,..,N as symmetry group indices, it reads

B0 (iB —m)ijap¥ip = Pig (iDijap — M8;;8ap)¥ip,
where
Bijap = YapDuij = Vap(9u8ij + 1gAJLS).
Note that W is a vector of vectors:
Y=y, vn)7,
where each ; is a Dirac vector (spinor).
If we consider the free field terms of the fermions only, this expression simplifies to
P, (iygﬁ('?”& = maijaaﬁ) W = By (1845 — MBep)8¥;5 = T;(i8 — m)S,;¥;.

In the last step, we dropped the Dirac indices again, writing the Dirac matrices and vectors as matrices
and vectors instead of their components again.

1In d = 4, y matrices have dimensionality 4. For general dimensions d, their dimensionality is different.
see section 13.2.
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According to our derivation in (>15.5.2) and (>15.5.3), the Greens function (times i) of the (free) Dirac
operator automatically is the fermion propagator. The “Yang-Mills Dirac operator” differs from the
usual Dirac operator only by a unit matrix in symmetry group space, or, in index notation, by a factor
8;j. Thus, are now looking for a Greens function —iDg(z), obeying

(18 —m) (~iD(2) = 6(2),
or, writing the symmetry group indices,
(i8 —m)6y; (—=iDp, i (2)) = S S(2).

[t is easy to see, that

l ik .
D ju(2) = | d*p—2—e-iv
F’k(z) f p m+ ie

solves this equation. Thus,

_ 0y e~ i (-y)

Drij(x = y) = (@7 ¥;,(0) F;01)|Q) = Jd‘*ﬁﬁ_ o

where ¥; = 1); by definition. Writing also Dirac indices,
(S}k e .

Brijas (e =) = (017 %o () s 00|0) = [ a*p (gt .

18.1.3 Interaction Terms of the Yang-Mills Lagrangian

Consider first the fermion part of the Lagrangian. Plugging in D, = 9, + igAjt®, we find that
PR —m)¥ = -+ P(iigA"tD)VY = - — gPALy WL,

where the dots stand for all the non-interacting terms.

On the other hand, we have also interaction terms in the Fj, E!*Y part of the Lagrangian, since, in
contrast to QED, Fj;, contains a third term, which is quadratic in the gauge fields (see (>18.1.1)):

Fu%F;lV = ((a A% —a Aa) gfabC AbAC) ((al‘AZ — avAl‘) _ gfade AZAX)
= (aﬂAa 0. Aa)(aﬂAv avAZ) _ gfade (aﬂAa P Aa)A”AV
gfabC AﬁAs(a”AZ aVAZ) + g2fabCfade AZAf;AZAz.

Here, we have decomposed FM%,Fa” ¥ into four terms. For photons, we have f?’¢ = 0 and only the first

term survives; it is the kinetic term. In addition, we have three interaction terms, two of which are
cubic and one is quartic in the gauge fields.

Let’s move on with the cubic terms:

—gf % (9,A% — 0,A%)ALAY — gfebe AbAS(orAY — avAL) = —2gf9b¢ (0,A% — 0,A%)A}L AY
—29(F< (3,A8) ALAY — F°0° (2,45) ALAY)
—2g(fbc (0,A%) AL AY + foP° (9,A%) AVAL) = —4gf2Pe (8,A%) AL AY.

Here, we used that f %€ is totally antisymmetric (see (>2.2.1)). Thus,
E&FY = (0,A% — 8,A%) (0" Ay, — 0V AL) — 4gf ¢ (8,A4%) AL AY + g2 faberade AP ASALAY.

If we now abbreviate the non-interacting terms of the Lagrangian as £, we find
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_ 1
Lyw = Lo — gPAGy"Wta + gf ¢ (9,4) Ay AL — 7 g2f [ 19¢ ALATAGAL
(note, that there is a factor of —1/4 in front of Fu‘%,Fa“ ¥ in the Lagrangian).

18.1.4 The Three Gauge Boson Vertex
An n-point function is basically given by a matrix element of the form

(0|7 (external fields) exp(i [ d*z L) |0),

as we found in section 7.9. In perturbation theory, the exponential will be expanded. There will be
terms, containing the three gauge boson vertex term

gf 4 (0,A%) AZAf

from L;,.. Such terms, will always also contain all the external fields and (in higher orders of
perturbation theory) might contain additional fields from other vertex terms from £;,.. Whatever the
term looks like, if it yields a non-vanishing contribution to the n-point function, it must contain three
additional gauge boson fields Aa,Aﬁ,Ag. They will be contracted with the three gauge boson fields of
the vertex term above and - according to Wick’s theorem - such contracted pairs become propagators.

ua
{P1
e

vb py-pC

Therefore, terms in the expansion of the exponential that contains the three gauge boson vertex looks
like

<Q| ( A% (xy) A (x,) AS (xg)) (ig faes (a(,Aﬁ(z)) A2(2) A (z)> |g>

= et igfdef <.Q Aﬁ(xl) Ae(xz) A;(x3) (aaAg(Z)) A2 (2) AF(Z)|Q>'

where the dots stand for other fields which are not connected to this vertex. Applying Wick’s theorem
to them, they separate from the matrix element written explicitly above. Now, we also apply Wick’s
theorem to the 6-point function which is left over. How can we form pairs of the six fields? If we
contract two of the fields which are evaluated at position z, this corresponds to a diagram where both
ends of a gauge boson line are attached to the same vertex. This is not, what we want to consider. Thus,
we want to contract each of the x;-fields with one of the z-fields. There are 3! possibilities to do that.
According to Wick’s theorem, these different possibilities need to be summed up.

Let’s start with one of them: Contracting the x;-field with the first z-field, the x,-field with the second
z-field and the x3-field with the third z-field yields
e, = igfes <Q 48(xy) (0,A4(2)) |Q> (Q)45(x,) AZ(2)|Q) (Q] A5 (x5) A5 (2)|Q)
igf ! (0,045 (1) 4%(2)]Q)) (Q[A7 (x2) A2 (2)|Q) (@] 47 () AF (2)]2)
igf % (02D (s = 2)) DEhe Gz — 2) DS (3 — 2),

where 0, is the derivative with respect to the ¢ component of the position z. In (>18.1.2), we found

. —in, 6%
DE4, (x, — 2) = (Q|AL(x) AL(D)|0) = f 4*p, '7;‘—’; e=ip1(r1-2),
1
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This propagator describes a particle with momentum p, propagating from z (the vertex) to x; (the
first gauge boson line). Unfortunately, this does not match our picture above, where the momentum
—p; points inwards from x; to z. For the sake of consistence with our picture, we turn the integration
variable around, p; = —py:

—in,, 6% —i1),. 6%
Fp.lc(xl Z) = fd4l§1 np% elp1‘(x1—z) = f d4ﬁ1 np% —lp1 (z—x1) — DF;LK(Z )
1 1

Now, the propagator describes a particle propagating from x; to z with momentum p;, as desired. We
choose this form of the propagators for the rest of this derivation.

Next, consider the derivative of the propagator:

—in, 6% —in,; 6% .
aZO'DF ;uc(z - xl) = aza f d4ﬁ1 % e_lpll(z_xl) = f d4ﬁ np% (ipla) e—lp1~(z—x1)
1

— 1 5% ,
= | dtp = ipg) e,
1

Had we chosen ﬁ,?,ﬁk(xl z) instead of D¥ u,c(z — x,), the momentum factor from the derivative
would be +ip;,, but this momentum p; would be minus the one in the vertex diagram we drew above.

Next, we switch to momentum space, where

—i —l —l

—i1,, 6% —lT] asb —inkés
#’; ( pla) - P ! = gcabc r’up( lplv)
1 2 Ps P3

G = igfdef

The fraction —i/p? are part of the propagators. The vertex factor (actually, only its part from the first
possible contraction) is simply?

¢ = igf e (alagtn) (0,44) |2) (@l4bx) A2(2)]|0) (0l4s () 47 (2)]0)
= igfabc nup(_iplv)-

Aﬁ(xﬂ Ag(xz) A,g(x3) (65}

N

(0,48(2)) A2(2) A5 (2)

In the same way, we can evaluate the other five possible contractions. Here, we always drop the factors
—i/p? of the propagators and turn implicitly to momentum space. Thus, we write simply

F;UC(Z xl) - n[.lk(sad

CZ — igfdef <_Q Aa(xl) (aUA%(Z)) |_Q,> <_Q,|A€(x2) A}C(Z)|.Q.) (Q|AS(X3) Ag(Z)|Q)
igfaef (BZJDF d.(z— xl)) DR (z = x3) DfGe(z — x3)
igf e (=ip1o) M8 MSF M50E = igf * N (=ip1p),

1 Only the fraction —i/p? is left over here of the propagators. The n’s and &’s appear to be absorbed into the
vertex factor. Still, we need those 1’s and §’s in the Feynman rules for the propagators to link the two
vertices (or a vertex and a polarization vector, for external particles) to which the gauge boson is attached.
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e, = igfe (Q]A%(x) A%(2)|Q) (n A (xy) (0,48(2)) |n> (45 (x3) A%(2)] )
= igf ng6¢ (=ipac )N N8 = igfP% myp(—ivap)
C. = igf®er (0lagtn) A5(2|0) (0]48Cx) 42)]0) (045 () (0,440) o)

= igf ® ngsf 0768 (—ip3e)Npd® = igf P 1,y (=ipsy),

igf*e! (a]ag(x) 42()]0) (0]450x) 4]0 (0]a5es) (9,44)) |0)
= igf e ngsg nEp (=ips)Nped® = igf ™ np(—ipsyu),

igf %/ (Q|A%(xy) AF(2)|Q) <n Ab(x,) (aJAg(z)) |Q> (Q45 (x3) A3 (2)|Q)
= igf e nkof (—ip2e)icdt n58¢ = igf* nyu(=ipap).

Adding up all these contributions and using that f%¢ is totally antisymmetric (and that Ny 18
symmetric), we find

Ci+Cy+Cs+ Cy + Cs + Co
— ig(fabc Tl”p(—ipl’) + facb nuv(_ipf) + fbac 77vp(_l-pg) +fcba np,u(_l-pg
+ £ PY (—iph) + Foea U (~iph))
= gf e (ntPpy — n"'pl — nVPpy — nPEPY + NpyPay + Mubap)
= gf e (py — p3)? + 1P (p3 — p)* + 1"’ (p2 — PP).

18.1.5 The Four Gauge Boson Vertex
The four gauge boson vertex term reads

1 .
— 79T ALATARAT.

In the same way as explained lengthily in (>18.1.4), we need to consider all possible contractions with
other gauge boson fields. There are now 4! = 24 possible contractions. Exemplary, let’s consider only
one of them:
1 . only 1
_ZQZfefgfehl <Q|(AauAbVACpAdO')(AiAgAl’fLAIINQ) =

contraction

1 .
— 29 fIfn (a|a alL|a) (a|at” AZ)a) (lac Af|q) (Q|a% AT|q)

1 . 1
— ZgZ]cefgfehL n}Pclé-af n%(gbg npké‘ﬁ nané-id — _Zngeabfecd npu nav.

In the same way, all other contraction will give similar results. Indeed, sets of four of them are equal,
such that the factor 1/4 is cancelled and only 4!/4 = 6 different terms remain:

_l-gz (fabefecd(nupnva _ nuanvp) + facefebd(n/,wnpa _ 7,,;1(77,’1/p)
+ fadefebc(nuvnpa _ n,upnva)).
18.2 The Faddeev-Popov Lagrangian

18.2.1 The Gauge Boson Propagator
Consider a theory with gauge bosons only, that is a Lagrangian

1
F&F}.

L=-2
4
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Due to our discussion in chapter 14, the n-point function of fields can be written as some fraction of
functional integrals, the denominator of which contains the expression

fZ)A exp (ifd‘*xﬁ[A]) = f@A eistal

where DA := [, , DAy. S[A] is the action. Since we know from section 3.7, that £ is invariant under
the (infinitesimal) gauge transformation?!

1 1
§ > (A = 4] = (0,a%) + feMac = A = (Dua)”,

the functional integral is badly defined, as explained in more detail in (>15.3.1). Imposing arbitrary
gauge conditions G*(A4) = 0 Va will constrain the fields A* covered by the functional integral to one
certain set of gauge equivalent fields. As in (>15.3.2), we impose this constraint by inserting a 1 in
form of?

C(A(X)

’

1= f@a §(6(4%) ‘d t

into the functional integral:

6G°(A%)

fDA etstl = fDADa e §(6(AY)) ‘det 5ol

Since the Lagrangian is gauge invariant, we also replaced S[A] —» S[A%] in this step.
Next, we should choose a gauge condition. Let’s choose the generalized Lorentz condition
G°(A) = 0* AL (x) — w(x).

8G°(A%) 5
= g (0 (=5 0e)) - ) = g @0 ) = - ooyt

We can now shift the integration variable A - 4 + g~1(da) — f,.APa® (actually, this is a shift plus a
unitary rotation, which also does not change the measure). This will turn A% - A and will leave D,

unchanged (to leading order in the infinitesimal a):

J DA eiSlAl = J DA Da 5141 5(G2(A))

1
detg aﬂDﬁd .

The minus sign inside the functional determinant is irrelevant because only the absolute value of the
determinant is taken. The only important difference to the photon field quantization from (>15.3.2) is
that the determinant now depends on 4, whereas it was constant for the photon field.

Since the equation above holds for arbitrary functions w® it must also hold for a (properly normalized)
linear combination of different functions w{ with coefficients C;(w{*). For any a, we can introduce
such a linear combination. Instead of the sum over i, we can perform an integral over w® and choose
the normalizations factors C(w%) to be a Gaussian function together with some normalization factor
N. Finally, we use the §-function to get rid of w:

1 We used here, that in the ad]omt representation (t*),. = —if *’° from section 2.2,
(Dua) = (9, + lgAﬁtba) = 0,a® + igAL(t")gcat = 0a® + gALfP%a = d,a — gA,f P ac
2 The notation is a little bit sloppy at this point: The §-function 6(6“(/1)) is actually N2 — 1 §-functions:
8(6%(A)) = 27 6(64(A)).
One for each value of a. And the determinant is in fact taken of a matrix §G (A%)/d«a, although we denote
this matrix in terms of its elements with indices ¢ and d.
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fDA elslal = fDA Da eSS4l (aﬂAa(x) a)“(x))

1
det 0" Dg

) 1
= Z Ci(w}) - Ck(wﬁz'l) f DA Da eSlAl § (6”Aﬁ(x) - w{l(x)) |det§ o#DS?
ik

N2-1

= N(f)fl)a) H exp (—ifd“x (a;l;)Z)

b=

fZ)A Da eSS4l § (6“AZ(x) - (u“(x))

1
det 0D

= N(E)JD(U exp (—ifd‘*wawb

= N(§) J DA Da exp f d4x—(6“A )(avav)) isla |det oHDZ%|.

. 1
>fDA DaeSlAl § (6”Aa(x) - w“(x) |det§ o#Dge

Effectively, we have added a new kinetic term

(O”A )(9"Apy)
to the Lagrangian. It now reads

1 1
L=—-F&F" — g(aﬂAg)(amw)

2
= 5 (0,5 - 0,47) (0042 — 0*A%) = 5 (9“49) 0" Auy) + O(4")
= ——((3 Ag)(0mAY) — (0,A5) (9" A% )) ——(G“A“)(a AY) + 0(43)
=-5 (—AﬁDAg + A%0,01AY) + %AﬁO”OVAZ +0(43)

= - %Aﬁdg(—n‘”l] + (1= 1)0Vo" — i€)Ay, + 0(43),

where we used integration by parts, since Lagrangians appear under integrals. The sudden
appearance of the i€ is explained in (>15.2.4). This is exactly the operator as finally found in (>15.3.2),
except for the trivial new factor 2. In Fourier space, it reads

(8% (nuwk? = (1 = € Dkeyke, — i€) ) iDYS = 6762,

which is solved by (see also (>15.3.2))
kVk°®
2 (o — (1 -0 )

18.2.2 Faddeev-Popov Ghosts

The derivation of the gauge boson propagator from (>18.2.1) was almost the same as of the photon
propagator from (>15.3.2). However, there is one important difference: The functional determinant
now depends on A. Thus, is cannot be treated as just another constant like N that is cancelled, when
we are interested in n-point functions (which are a fraction of functional integrals, as we saw in
(>15.1.2). This cancellation is no longer possible in the non-Abelian case.

Fbc(k) k2 +ie

The determinant now reads (see footnote on page 187)

1
det— 04D,

DZ¢ =6%0d, + igAﬂ(tb)ac =6%0, + gAsz“C =§%0, — gAZf“bC.
Using the analogy f(HidHE‘dBl-)e'ezAUgf = det 4, as we already did in (>15.5.2), we can write
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1
det—0D,

i
det—0"D,

= fl)ﬁ DY exp (ifd“x 5(—6“D#)19>.

The factor 1/g is absorbed into the Graffmann fields 9. We can write them as another effective
addition to the Lagrangian. Thereby, ¥ can give rise to new particle excitations. They are called ghosts.
Their contribution to the Lagrangian is

Lgnosis = D(=0#D,)9 = 9% (=0# (840, — gALCanc) ) 9¢ = —9%(84c00 — gf PC#AL)0°.

Note, that the derivative d* in the second term not only acts on AP butalso on 9€. The kinetic operator

in the Lagrangian, §°[], is equivalent to §%’k? in Fourier space. The kinetic operator of the gauge
boson at the end of (>18.2.1) reads —§,,n*"d + ---. Obviously, the ghost propagator in Fourier space
reads

i84p
k? -

5 F,ab (k ) =

The second term of Ly, describes an interaction between two ghosts and a gauge boson. This
interaction part of the ghost Lagrangian can be written as

Line = gf % 920LAL9T = gf el 9497 9HAL + AL, 0497).
We can find the corresponding Feynman rule for this vertex in the same way as in (>18.1.4):
(0|7 (external fields) exp(i [ d*z Li,) |0)
= (0] (++Fa(0) 9y (1) A (2)) (1974 942) (8 (2) 04 45(2) + 45,2) 997 () ) [o).
There is only one possible contraction, since a ghost propagator needs to be composed out of a 7 field

and a 9 field. Note, that the order is important; first 9, then 9: Dy 4, (x — ¥) = (Q|T 9,(x) 9,()|Q).

Thus, whereas for the gauge bosons Dr(x — z) = Dr(z — x), this is not true for the ghosts. Contracting
the three pairs of fields and form propagators out of them yields

igf e D, (x, = 2) (=D (2 = %) 94 Df ey (2 = x3) = Df oz = x3) 94D} o (z = 1),

where the minus signs in the brackets come from commuting 9, with 9/. The derivatives 8, yield a
factor of —ip#, where p* is the momentum of the propagator. To assign certain momenta to certain
particles, let us denote the momenta in the following way:

The dotted lines are the ghosts. In the first term in the brackets, the derivative acts on the gauge boson
propagator, describing a propagation from x; to z (to the vertex), which coincides with the direction
of the momentum p, thus we get a factor —ip* (and not ip*). In the second term, the derivative gives
a factor —ikf. As explained in more detail in in (>18.1.4), we then turn to momentum space and keep
only the §’s and n’s from the propagators:

igfeer 8¢ (=85 (—ip*) 8&n, — 8Ny (—iki) 8L) = i2gf S 8¢ 85 6n, (p* + kL)
= i2gf" ( + kv = —gf " kyy.

In the last step, we used momentum conservation: p + k; = k.

18.2.3 Note: No Ghosts in Axial Gauge (no reference in summary document)
In the derivations above, we used the generalized Lorentz gauge
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GC(A) = 0" AL (x) — w(x).
Let us, instead, consider the axial gauge
G°(A) = n*A5 (x) — w(x),
for some vector n* with n? = 1. Using this gauge, we find

aGC(A“)_ d
dad  dad

1 1
= ——nt9,64 4 fCrintAL = —En”Dﬁd

ucl c cab pqa b g uclu c cab.,u pa b
n (A#—Eaua + [P ALa )=W(n Au—gn ouac+f nAua>

Dﬁc — 6bcaﬂ +gf“bCAﬁ

5G°(A*) & L5 .
W 5ad(a“(AC——(D a) ) ):-EW(auDﬁbab):_Ea#Dﬁd

= —56”(66‘16# +gf*aAL)

18.3 Ghosts to Fix the Optical Theorem

18.3.1 Cutting the Diagram
We want to cut the following diagram along the dashed line:

N~ 2 l=p/2+q
M = ky =p/2—-q
pP=p1+D2
’1’2 ka pé\
L T J L L J
Mep Ml

This cut produces an amplitude M ??, describing fermion-antifermion annihilation into two gauge
bosons and an amplitude M °? describing two gauge bosons producing a fermion-antifermion pair. In
the diagram M (without the cut), those two amplitudes are connected by propagators of the two
intermediate gauge bosons. That is, the amplitude M reads

iM = lf d*q (i ~ 0" 0ac 0™ pa (imcd
2

k% +ie kZ+ie 4
_ ”7 (Sac —iﬂw5bd s
— d4— Mab Mcd .
ARGl o e e e Gl

There are few things to clarify about this expression. First, note that the notation of the momenta is
exactly the same as in section 11.3. Second, the amplitudes ]V[m, and ]\7[!,6 are here used in the form

without the adjacent gauge bosons. That is to say, just as our usual notation when dealing with the
Ward identity, we write

b _ b d — d H

M = M sk Eic,» Mt = iMEL el €k,

Finally, the global factor 1/2 is a symmetry factor.
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In (>11.3.5), we derived that we can write the equation above also in terms of two integrals over k;
and k, instead of over q:

_inup6ac —iflw5bd
k? +ie kZ+ie

M = fd4’;1 d*k, 2m)*8(k, + k, — p) (iﬁ[;%) ( 55

pa )

Now it is time to cut the diagram, which means, we replace the propagators by §-functions as in
section 11.3 and 11.4:

1 P
m - —2mi (S(kl )

Doing this replacement in the amplitude gives us the imaginary part of the amplitude. Specifically, we
also need to replace iM — 2Im M to keep a valid equation. Then, as we saw in (>11.3.6), we can use
the §-functions to turn d*k; into dk;:

2ImM
1 47, 471, 4
(IME2) (—inHP 8 e (—2m) S (kD)) (—in"° 8pa (—2m1) 8 (k3) ) (iM <L

1 -~ _ .
=3 f dley dk (2m)*8 (ks + k = p) (IM,5)(=in"?8ae (=) (=in"" 8pa (=) (iM55
=:d¢

1 ~ _
=2 f dep (i) 07 8 Spg (IMEL).

18.3.2 Amplitude of Fermion Annihilation to Gauge Boson Production

To order g2, the amplitude receives contributions from three Feynman diagrams: M'* = Y3, M.
| —<—ooo0000 0 j—e——o000000 b a
P1 A ’,‘f} D1 Ak ﬁz Py~ xaas Ty
P2 2 ) 1 . T, k
j b j a jo7P2E %
ﬁlab ﬁ,‘{zab jv”l-gab

THE FIRST TWO DIAGRAMS:

Using Feynman rules, the first two diagrams yield?

_ i
iMlab = Up, (—igy#t®) E—m (—igyt?) Up, Euk,Evicy k=p, — ks,
s _ . [ .
M =1, (—igy t?) o Gt w, fuEw,,  k=ka—pr
Adding them up yields

i = (TP + (T2
i i
—(—ic)2 & b b
= (—ig)* Uy, (eklt“ T &, t7 + &t € ta) Up,-

THE THIRD DIAGRAM:

1 We do not write the indices of the symmetry space. Thus, the Kronecker delta of the fermion propagator
is a unit matrix which is not written explicitly. Similarly, the matrix components t;; appear without indices
as matrices t%.
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Here, the three gauge boson vertex comes in. Since the momenta are outwards in this case, we need a
total minus sign in the vertex rule of the three gauge boson vertex (where momenta were defined
inwards). Note, that —k = k; + k.

_inopfsdc

iMSP = Uy, (—igy°t®) 2

(=g r e (ky = k)P + 10 (kg = k)Y + 170 (k= kD)) Uy, € i,

i

= @ig®) B, (pte) 17
. pave ((Skl e, ) ey — i) + 28 (e, - Gy = K)) + &f, (e, - U kz))) Up,.

AMPLITUDE OF GAUGE BOSON ANNIHILATION TO FERMION PRODUCTION

M@ is simply the inverse process to M ??, One can convince oneself that we can get M ¢ from M *»
simply by the replacements

ki, = —kqiy, Uy, DU

1 5 Up, 2V

!
2 p1’

where we choose p; to be the outgoing momentum of the antifermion and p; of the fermion.

18.3.3 Choice of Polarizations
Let k* = (KO, 1—5) be the momentum of the gauge boson. Then, we can choose the two physical

polarizations s)’fk for A = 1, 2 to be purely spatial vectors orthogonal to k and to each other:
7 0 - — — =
Ex = (E ), where kip- k=0, kiy-kiy=06u.
12

Thus, also g3, - k = 0.

For the present purpose, it is most convenient to use

u L (k°
£+k = —_,( —>)
= V2|k| \tk
for the unphysical polarizations. Then we have the following identities?
Eik " Ea'k = —Oqa» €4k & = 0, Epp €4 = 1= Oyyr.
[t is easy to show explicitly, that they also obey the completeness relation
v =l el + el el — Z enErne
1=1,2

18.3.4 Plugging in the Expansion in Polarizations
Plugging in this expansion for the n’s from (>18.3.3), the following expression which appears inside
2Im M reads

1 Derivation of the last identity: Since k is a gauge boson momentum, we have 0 = k? = (k°)? — k2. Thus,
1 -
. ), = — 02 _ 14 2
€tk " €4’k ) ((k ) (x+)k ) ) )
If the signs + and +' are equal, the bracket vanishes. Otherwise, the brackets give (k°)? + k? = 2k?. Thus,
€4k - €41, vanishes for equal signs and gives 1 for unequal signs.
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§<iﬁ;f) I (77

_ ab P P _ uo.p
(lM ( &k, &4k, T 5+k €k, Z 51k151k1>

=12
v o v o v 4 ircd
(E_k28+k2 + &k, €%, — Z Sllkzsl!k2> 5ac5bd(lMpa
A'=1.2

When we multiply out those two large brackets, there will be sixteen terms (the sums over A and A’
contains two terms each).

18.3.5 Cancellation of Terms without the Need of Ghosts

Some of the terms from (>18.3.4) that involve unphysical polarizations cancel right away, also without
the ghosts (however not all of them; the ghosts will be needed in the end to cancel them all). Let’s
consider those terms now.

To show that these terms vanish, we need the following statement: At the end of the present section
(see below) we are going to show, that the expression

frab M
M g k3
vanishes, if the first polarization vector obeys & - k; = 0 (we encapsulate this proofinto a subsection

at the end of the present section (>18.3.5) for a better overview).

When we multiply out the large brackets in (>18.3.4), in each of the sixteen terms the amplitude JW',%’

will be contracted with one polarization factor of the first brackets (carrying a 4 and k;) and one of
the second bracket (carrying a v and k).

For example, there will be a term that contains the expression
b
M2 slk ¥k,

This term vanishes, since by the definition of our polarization vectors from (>18.3.3), efsz =

kY /\2|ky| ~ kY . Also, the physical polarization &y, fulfills &y, - k; = 0. Therefore, using the
statement with the pending proof from above, this term vanishes.

Also terms, where both polarizations are +-polarizatons, vanish, since also s fulflls the necessary
u
condition &, - kq ~ k% = 0:
b u b Il —
LM,fv iy ¥k, l]\/[;fv +k, K2 = 0.

[t can be shown, that also all other terms vanish, except for terms with + and - polarization as well as
terms with only physical polarizations. Thus, the only terms that remain are

1, -
; b s yrcd
> (lM“ ) N*P1NY° 84 0pa (lMpCG
Liiiran P p p - rcd
(lM ( ek s 8k, + 84k €l 0,85k, + i, B, Ei, Bk )5ac5bd (imse

where a sum over 1 and 1’ is implied. Note, that the third terms is the one with only physical
polarizations, which is needed to satisfy the optical theorem. The other two terms will be cancelled
only by the ghosts.

PROOF OF THE STATEMENT GIVEN IN THE BEGINNING:

We now want to proof that
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IMZ ey ky =0 if &, k=0
For this purpose, we go back to the explicit expression for the amplitude M’ = ﬁf,ffs,’jls}{z from
(>18.3.2) and replace &, — k,.
FIRST TWO DIAGRAMS:

The contribution of the first two diagrams is (after replacing &, — k)

lﬁl%zvgglk¥=(_lg)2 ﬁpl (Eklta kztb + kztb 'Eklta> upz.

Py —ky—m k,—p1—m

Since (p, — m)u,, = v, (p; + m) = 0, we canreplace k, - k, — (p, —m) and k, > k, — (p, + m) in
the first and second term respectively, to cancel the denominators:

iMY e kY = (=ig)? Ty, (&, t°(=Dt" + tPig,t?) up,
=_i(_ig)2 ﬁlh 8k1(tatb_tbta) Up, = (_ig)z ﬁpl (_iskl[ta:tb]) Up,
= (=ig)* f ™" By, (ex,tc)up,)
where we used [t,, t,] = if *P‘t. from section 2.1.
THIRD DIAGRAM:

Replacing &, — k; also in the third diagram, we find
= : _ —i
lME?;?v gll:lk}/ = (ng) Vp, (yptc) ﬁ
- fabe ((ekl dep)(ky — k)P + f (ky - Cky = k) + K2 (e, - (k — kz))) Uy,

The bracket contains three terms. The second one yields, plugging in the momentum conservation
identiy k, = —k — k4,

8,?1(k2 (kg — k)) = 5,61((_]‘ —ky) - (kg — k)) = 5161 (kz - kf)
The sum of the first and the third term gives us
(e, - ko) ez — ko) + K (e, - (k — k)
= (e, - (k+ k1)) (ke + 2k )P — (ke + k)P (&, - 2k + ky))

= g, ((k + ky) (k + 2ky)P — (k + ky)P 2k + k1))
= &y, ((kKP + 2Kk} + ke kP + 2k, kD) — (2kkP + ko kP + 2kkf + ;7))

= &, - ((kakf) = Uek?)) = (e, - ka)f = (2, - k).

Since gauge bosons are massless and since we consider them to be on-shell (which is also demanded
by Cutkosky rules), we can use k? = 0 and we find

. —i
M5 ek = (™) By, (Vote) 17 £ (e, k% = (o, - KR + (i, - Ko )KT)

Using, again, (p, — m)u,, = i, (p + m) = 0, the k” of the second term in the bracket yields, together
with the spinors and y,,

—Up, Rup, = 17p1(191 + pz)upz = Up, (-m+ m)up2 =0,

where we used —k = p; + p, from momentum conservation. Thus, only the following two terms are
left:
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—i
IM5y, ef k3 = (i9%) Uy, (¥ptc) z [ (e, k% + (ex, -k )kT) wp,
—i
= (ig®) v,, (vptc) w7z fabe (s,flkz) Uy,
—i
(197 B, (rpte) 75 £ (e, - k)KD)

_l(lg )fabc Uy, (st )uy, (Ekl 1)'

. . 2 b —
—i(ig?) ¢ v, (ex,tc)up,
=(-ig)?

ALL THREE DIAGRAMS COMBINED:

The first term of the third diagram precisely cancels the contributions from the first two diagrams.
Only the second term of the third diagrams remains:

. l(lg )
IME ey kY = MG e ks + IMSR, e ky = ——=5—f¢ 7, (ertIup, (e, - k1)

So far, this is true for any ¢ . If & - k; = 0, everything vanishes, which is exactly what we wanted to
proof.

18.3.6 Terms that are only Cancelled by Ghosts

Now we consider the terms that do not cancel by themselves. Apart from the terms with physical
polarizations only (which we abbreviate by “+ --+”), we found in (>18.3.5) that only the following terms
remain:

1, _
E (lM;%J) nupnva(sacabd (i]\/[pcg
1, _
- E(iM;%’) (8, 0k, €0, €%k, + b, ka eV, €%k, + ++* )OacOpa (IM55
1, - _
= E(i]v[;%)gﬂk 5+k2)(l £+k1£ kz) +5 (lMab fklg kz)(iMpa;’gfklgzkz) + -

Consider the first of those brackets and plug in the formula for &}, from (>18.3.3). Then, we arrive at
a structure for which we found an explicit formula at the very end of (>18.3.5):

ab u ab u v 1 _i(igz) abc
M —k1€+kz \/—| | PW g—klk \/§|E | k2 f vp1(k1t0)upz (g—k1 ’ kl)
2 2
- M abc = |E_1|
- kz f vpl (kl tC)upZ |I—C>2 |:

where we used

2|, |”
— 1‘k1 (ki))z
ooy = e (G4 ) =

As already stated in (>18.3.2), we can get M from M by the replacements ki, = —ki;and v, — u,r

and u,, = v,r. Thereby,

—i(ig? A

lMab ”k Kkz k2 fabc ﬁ ( 121 c)v T

Now, only two contractions are left:

__l(lgz) abc = k |k2|
iM V£+k ey, = =iM, vs_k1£+k2 ok, ~ K2 f Uy, (kat )y, =
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=

_ —i(ig?)
kiok, k2

£ Ty (—heat )y, M.

lM eksk = iM,e’ £+k2| |E|
1

pot_k,

Picking those four contributions up, we find (we write the contributions of the physical polarizations
simply as “+ --+” again)

1, - _
L (L) 142 B (1TSS
1 1
=—(1]V[“b et 4k, ) (ISR e & k2)+§(l]\/[“b e 8, ) (IMGR e edi,) + -

=E(_l(lg )fabc _pl(k1tc)upz) <_l§€lf )fabd ﬁ ( kztd)v ’>

—i(ig?®) _ —i(ig*) _
+§< k2 fere Vpl(_kztc)upz>< k2 feP y, Gerta) vy | +

- (e Gt ) (<

fe Uy (—kata)v, )

In the last step, we set the two term that were added in this expression (apart from “+ ---”) equal. This
is valid, since

17131 (kl + kZ)uPz = 13171 (pl + 192)‘”172 =0 A ﬁpl (kl)upz = _ﬁp1 (kZ)upz’

Upy (ke + ko) vy = Upr (o1 +p2)Vp; =0 = Ty (kv = — Uy (k) Vpy,

where we used (p — m)u, = ti,(p —m) = (p + M)v, = V,(p + m) = 0.

18.3.7 Using the Ghost Diagram to Cancel the Surplus Terms
The same we did with the amplitude M, we can also do with the amplitude of the ghost diagram My,
By exactly the same steps as in (>18.3.1), we get from

——Jd“q(i licl(sbd(

to
21m My, = — f dep (iFT8P) 84cBpq (i) = — f dep (1F8) (182

where d¢ is defined in (>18.3.1). Note the minus sign: It comes from the loop of the ghosts; since
ghosts are anticommuting particles, their loops require this minus sign according to Feynman rules
(just as for fermions). Obviously, this loop only exists when the two parts ﬂg‘flb and ]V[g‘ff are attached

to each other - therefore, is cannot be absorbed in neither ﬁg‘flb nor ]\’/\[g‘flb alone.

- a a -
P asssann k\L ssson S
/132 g k;t b b~ /kz k FE\
s s
Using Feynman rules, we find
Bl = By, (—igrhed) up, —ndie (_gpanciiyy - 29D e 5 g ey,
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—(lg)

inuv(sdc

i Mignose = Uy (—igyHt?) vy B — (—gfabc(—kg)) £OP¢ Uyt (—leat Y.

Obviously, those terms are exactly the same as the surplus terms from (>18.3.6). Due to the minus sign
because of the ghost loop, they cancel. Let’s pick up all our results:

1 _ _
2ImM = f dep (iME0) P10V 84 8pg (IMSS

_ 2
=fd¢ (( g )f‘”’c ‘pl(kltc)up2)< ig” )f“bd Ty (—kat v, > )
2Im My, = — f dop (iMG) SacOpa (IMgG
- [ ag (_i(l‘g D e 'm(kltC)upz)(_l(‘g dpave ., (—kytyw, )

where the “+ ---” in 2 Im M stand for terms with physical polarizations only. Therefore,

2Im My = 2Im(M + My, ) = f d¢ (only physical polarization terms).

18.3.8 Cancellation of Unphysical Polarizations in QED
Any amplitude M (p) = M, (p) efp with an external photon with polarization e/’{p yields a cross
section proportional to

DM = ) M) M) el

A=1,2 A=1,2

where the sum covers only physical polarizations 4 = 1, 2. We saw in (>6.3.1) that we can replace
Y2 s)’fp &p = —n*’ + -+, where the further terms “+ ---” vanish by the Ward identity (we have proofed

that the Ward identity holds in QED).

To see that this replacement is equivalent to the fact that the unphysical polarizations cancel each
other, consider for simplicity the special case, where the momentum of the external photon of interest
reads p* = (p, 0,0, p). Then the two transverse polarization vectors can be chosen to be

&1, = (0,1,0,0), &, =1(0,0,1,0).

P
With this choice, we can explicitly write the sum as
D M) MG P) elyet, = MGEIE + 196
A=1,2
Also, for this choice of the momentum p*, the Ward identity reads
0=p“M,(p) =pMo(p) —pM3(p) & My = Ms.
Thus, we can add a zero to the sum above as follows:
Z M, (p) M (D) 3,67, = M1 (D)I* + M (D)I? + 1M ()I? — [ Mo ()]

=12
= —n*Y M, (p) My (p).

This is just another way to derive the replacement rule ), s/{‘stp — —n*¥ (to be honest, we only

performed this second derivation for a special case). But in this way, we used the cancellation of the
unphysical polarizations in a more explicit way. Or, in other words, only because the unphysical
polarizations cancel, the replacement rule ), ; efpsj’p - —nHV is valid.
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18.4 The Gauge Boson Self-Energy

18.4.1 The Fermion Loop Diagram

We evaluated the fermion loop diagram i[1#V(q) as a contribution to the photon self-energy already
in section 13.1 and 13.3. The only difference in the non-Abelian case is that the vertices receive the
additional factor t2. Since the Feynman rule, that the trace needs to be taken over loops is still valid in
the non-Abelian case (and also applies to the symmetry group space), those factors will appear inside
a trace.

Therefore, we can simply copy the leading order result from section 13.1:
il'[;’zv Lo i(q?n™ — qq") T, (q?) Trt®t?,

where we can copy the formula for 1(g?) = IT,(q?) + 0(g?3) from section 13.4,

2i 1 2 2
laof dx x(1—x) (—+ln“—+0(e)>,
T Jy € A

in(qz) = -

where A = —x(1 — x)q? + m? and € = 4 — d. Let’s use that, to leading order, ay, = a = g2/4m and

write it as
8ig? ig> 8 .
W (47_[)2 z + finite.

1
2
ill,(g*) = — j dx x(1—x) -Z + finite = —
0

=1/6

Recall from section 2.2 that Tr t*t? = T(R) §P. Also, if we consider ny species of fermions, there will
be ns of such loop diagrams (there are ny = 6 quarks that can couple to gluons). Their explicit value
depends on the fermion mass m, which appears inside the A, but obviously, the divergent part is
independent of A and m and thus independent of the fermion species. Therefore, to include an
arbitrary number of fermion species, we can simply include a factor n. Thus, we arrive at

2
ey ! LO ., —-g 8n o
ime = i(g*n*™ — q*q") T(R) Sap (W . 3—Ef + f1n1te>.

18.4.2 Single-Vertex Gauge Boson Loop Diagram
Using the notations

p

d,aq_gg C,p
a, b,v

—_—

q

and the Feynman rules from section 18.1 for the four gauge boson vertex as well as the gauge boson
propagator from section 18.2 in the Feynman-‘t-Hooft gauge £ = 1, we find that the amputated
amplitude of this vertex reads

_:8cd
%f ddﬁ( l5p2ndp> (—igz (fabefecd(nypnva _ n,uzfnvp) + facefebd(n,uvnpd _ n,uanvp)

+ fadefebc(nuvnpa _ n,upnva)))

Using the Kronecker Delta §°¢, we can turn all d’s into ¢’s. Then, the first term of the vertex factor
vanishes, since f ¢ is totally antisymmetric and thus f¢°¢ = 0. For the other two terms we can use
the normalization f%°4fb¢d = N§% from section 2.2, where N = 3, since we have a SU(3) theory here.
Also, we contract the Lorentz indices using 7,,. Then we find, usingn,, = d,
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1
—-g*N(d — I)S“bn“vfddﬁ >

Performing a Wick rotation p°® — ip°F and using the formulas for dimensional regularized integrals in
section 12.6, we find for the integral

1 1 1
dd‘—~Jdd‘ —=fdd-
J p? PE oz PELZHA

Thus, in dimensional regularization, this diagram does not contribute.

_ 1 r1—-2+¢€¢/2) 1
- (47-[)2—6/2 r(1) Al-2+€/2

A=0 A=0

18.4.3 Sum of the last three Diagrams

Note that ##V, #*¥ and ###" are all linear combinations of I'(1 — d/2)n*#Vq? and I'(2 — d/2)n*"q? and
I'(2 —d/2)g"". Thus, obviously also the sum 7*¥ + #t#Y + T*¥ will be a linear combination of those
expressions:

Y 4 /B 4 T4 = T(1 — d/2)n"q2 A +T(2 — d/2n"q2 B+ T(2 — d/2)q"q" C,
where
A=dA+A+A =x(1—x)(g(d—1)—%d(d—1)—%> =x(1—x)-%(4d—4—d2)
—x(1-x)-(1—d/2)(d—2)
and thus

r(1—d/2n*q* A= 1-d/2)I(1-d/2)n*q* x(1 — x)(d — 2)
=T(2—-d/2)n*q? x(1 —x)(d — 2).

Thus, this term can be combined with the second one, the B-term. Plugging alsoin B = B + B + 0, we
find

Y+ /AW + 7R =T(Q2 —d/2)n*q? (x(1 —x)(d —2) + B) + C-term
= T2 - d/2)n™¢? (x(l —0d-2)+ % 2-x)7%+ % (1+x)?% - (d—1D(1 - x)2)

=:B'

+ C-term.

Underneath the integral, the only x dependencies come from A and B’ (and the C-term, we will
consider later). Note, that A ~ x(1 — x). When we substitute x - 1 — x, A will remain the same and

also the integral itself will: fol dx - flo(—dx) = fol dx. Thus, we can simply plug in 1 — x for any x in

B'. Of course, within each single term of B, we must replace all x by 1 — x, not just some of them.
However, terms linear in x have only one x and then we can replace this x as follows:

LSRG S SOU
= — —-_X = — — — = —,
XZX Ty Ty mX =5

To get an elegant result, we only replace the factors x which are marked by red color by 1/2:
1 1
B' =x(1—-x)(d—2) +§(2 —x)? +§(1 +x)?2—(d—-1)(1 —x)?
1 1
=(x—x2)(d-2) +§(4—4x+x2)+§(1+2x+x2)— (d—-1)(1—2x +x?)

d 2 2 2 1 2 1 2
:E(Zx—Zx —24+4x—2x*) - 2(x—x )+E(4—4x+x )+E(1+2x+x)
+(1—2x+x?)
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d 1
=—E(Z—Zx—4x+4x2)+(1—4x+4x2)—x+2+§

d
=—5(1—4x+4x2)+(1—4x+4x2)+2

d
- (1—5)(1—2x)2+2.
Finally,
. d d
C=CG+0= —(1—E>(1—2x)2—(1+x)(2—x)+x(1—x) - —(1—5)(1—295)2 _2.
=2+x(1-x)
Obviously, C = —B'. Therefore,

R+ /R + B =T(2 — d/2)n*q? B' + (2 — d/2)q"q" €
=I(2-d/2) 1"q*B' +q"q" C) =T(2—d/2) B' (""q* — q*q").

18.4.4 Divergent Part of the last three Diagrams
To find the divergent part of the last three diagrams, write them down explicitly:

- . _ i‘ll4_d 2 1 1
HI;Z + HI;Z + HI;Z = W CAaabf de (ﬁ'ﬂv + ﬁ'#v + ﬁ’-#V)
0
Fo4—d o2 1
—u W A2 AV r2-d/2) ( _g) _ 2
= i Cabar ("' q* — q*q") ) dx—5z— ((1-3) Q=207 +2

P2 1 €T 2 d
= (ZQT)Z Cabar (" q* — q“q”)fo dx% ((1 - 5) (1-2x)*+ 2>.

As in (>18.4.1), we can keep only I'(¢/2) = 2/€ + finite of the fraction in the integral, since
(4m)~¢/2A€/2 i€ only contributes a factor of 1 to the divergent part:

S uv o Uv = uUv
l_Iab + l_Iab + l_Iab
ig?

1 d
= @n)? CsS0pM*q% — q*q") F(E/Z)fo dx ((1 - 5) (1-2x)%+ 2) + finite

=5/3 for d=4.

='uv2_yvC5 _gz _Ezf"
1(77 q q CI) A%ab (47_[)2 3 E+ Inite |.

18.7 Counter Terms

18.7.1 Counter Lagrangian
We start out with the Lagrangian from section 17.2:

L=-

1 1 _ 5
G PR =55 (0"47)" + B —m)¥ + 6(~04D, )0,

This Lagrangian is the bare Lagrangian with the bare fields and the bare coupling constant g.

FIRST TERM:

Let’s start with the first term, using our expansion from (>18.1.3):
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_%(auAa 9 Aa)(auAv a"A”) + gofabe (6 Aa) Al4y — 4g2fabafade AbAcAuAv_
The first term of £ thereby can be written as three terms. Let’s consider them one by one:
2 (2,48 — 3,A9) (91 A% — " AL) = — 3 740,48, — 0,45, (" A% — A,
= 46 (~5 (0,48 — 0,427,
Gof ¢ (8,A4%) ALAY = goZ3/ 2 Fob¢ (9,A%,) AL, AV = (1+679) - gf 2 (9,A%,) AL, AV,
— G ORFF O ALASAGAY = — L GRIAF S A 5 ALY,
= (1+539) (2 Fe o Al a5, % A2, ).
Thereby, the first term of £ reads

1
-2 FLE

1
= —ZFr‘wa’“’ 53(aﬂArv 0,A42,)(0"AY, — 8V AL,) + 879 gfobe (9,4%,) A%, AV,
_ _54gngabc]cade A A%}Aﬂ A1r}e:

where F7,,, is just equal Fj}, but with the renormalized fields and g instead of gj.

v
SECOND TERM:

Luckily, the second term is a bit simpler:
1 2 1 2
g (0nag)’ = ——Z3(6“Am =(1+8) (—Z—E(G“Aﬁﬂ )
- % (9448,)" - % L5, (omas,)’.
THIRD TERM:
The third term is complicated enough, again, to be worth consider its subparts,
P> —m)¥ = iPoV¥ — g, PALL*Y — m PV,
and consider them one by one:
YoV =iZ, V0¥, = (1+6,) - iV,.8¥,,
—goPALLOW = —go 7,73 P A%, 90, = (1 + 6,) - (—g P, A%, t2W,),
—moPY = —mZ, P, ¥, = —(m + 6,,) ¥, ¥,.
Thus,

Y@ —m¥ = ¥, (D, —m)¥, +i6, ¥, 0¥, — g6, ¥, A%, t*¥, — 5,9, ¥,
=P, (iDy —m)¥y + P, (i6,8 — 6) ¥, — 96, P, A%, Y,

where D, is just equal D, but with the renormalized fields and g instead of gj.

FOURTH TERM:
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Recall from section 17.2, that the t* inside D, needs to be chosen in the adjoint representation:
(tYpe = —if €. Then,

9(=0%D, )0 = 9%(~0# D)0 = 9% (—0H (89, + igoAL(t)ap) ) O
— .5a (_au((gabaﬂ + gOAchfcab)) 19b — ga (_au((gabau _ goA;CLfaCb)) 1917
=9%(=6%0 + go0,A5f*P)9? = =699 09P + go9?0, AL f PP
Having rewritten this term into a more practical form, we can now renormalize:
9(=0D,)0 = —Z,6ICTIL + goZaZy > 920, A, f 2P 0P

- (1 + 64) ( 5ab19ﬂl:|19£) + (1 + 519) gﬁgauAgufaCbﬁf
= 9,(—0#D,, )0, — 5,980098 + g67920,AS, fPIp,

where D, is just equal D, but with the renormalized fields and g instead of gj.
FINAL RESULT:

Picking up all results, we can write the Lagrangian as a renormalized Lagrangian £, of the same form
as the old one, but with the renormalized fields and g instead of g,, and a bunch of counter terms £ :

L=L,+Lg,
where
1 a qga a 1 upqa 2
L= —163(6#AW a9, A% ) +P,(i86,8 — 8, ¥, — 8,927 —2—553(0 A%,
_ 1
— g8, W, A%, t%W, + 539 gf b (9,A%,) AB, AV, — Z@fg gifebefade b Ac Ak AV,
+ 96195,?6”145”]‘“1’19}’.
18.7.2 Value of the Counter Term Parameters
VERTEX COUNTER TERM:

From section 17.6 we know that the infinite parts of the vertex correction read

3 2

Lo Z(C 1C +3C)—'t“”1 g (2¢, + 2C,)
@zt 27 taT A ) TN Tz Ve T kA
We want to cancel this infinity with the counter vertex igt®y*§;, thus §; must be

1 g°

8 = < lar )2( 2C, — 2C,).

For a general gauge ¢, one can show that

1 g2
€ (4m)2

ELECTRON SELF-ENERGY:

1
6, = (—ZCZ—ZCA+2(1—§)C2+E(1—5)CA).

From section 17.5 we know that the infinite parts of the electron self-energy read

igz

(4m)2e
We want to cancel this infinity with the counter fermion propagator i(8,p — &,,), thus §, and §,,, must
be (here now for a general gauge &)

1
—C;(2p — 8m).
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2 2

9
62 6(4 )2( ZCZ +2(1 f)CZ) 6m 6(47'[)2( 8C2m)
GAUGE BOSON SELF-ENERGY:

From section 17.4, we know that the infinite parts of the gauge boson self-energy read

Y wov —g 1 8nf 5
i@ n*" —q q)6ab(4n)2 ( T—2«§CA).

We want to cancel this infinity with the counter gauge boson propagator —i&;(q?n*’ — q#q"), thus &5
must be (here now for a general gauge &)

1 g% /10 8
8 = E(fT)Z<?CA - %T +(1— g)cA).
18.8 Asymptotic Freedom

18.8.1 The B Function
In (>17.6.3) we used the regularization rule g = Z~1u@=9/2 g, from (>17.6.1) to show that

d
u£=—§g+0(g3)-
Thus,
d _ dgaf(g) € 9f (9)
w60 =g g = (504060 ) G

Using the following formula for the § function in terms of the §’s from section 16.6 (derived there for
QED, but still valid in the non-Abelian theory) together with the explicit formulas for the §’s from the
very end of section 17.7, we find

(s —6,—26)=gS 0 (5,—5,—Ls
Bg) =g PR (1 275 3)—g§+g(——g)dg( 03 3>

1 2 110 8
:g§+9(_£g) (45)2<( 2C, - ZCA)_(_ZCZ)_E(?CA—%’[))
€

311 4n 311 4n
-5+ - 5) ol )
2 (4m)? 3 (4m)? 3

In the last step, we set € — 0.

18.8.2 The Running Coupling
We can derive the running coupling for a general f function

_1C 3
B—z g

with constant C by the following equation from section 16.7 (dA - —dg):

f”':”dl( /) fgd' - ngd’ a2l = (7 )
np'/W==| dg' 7x=-=| dg'g 7 =—Z|-59"*| =2(%-=
p'=u g B(g) Cg C 2 g C gZ gZ

=lnp/u

gZ

_2 —
A g pw T¥g2CInp/u
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Thus, for our present case of

_ 2 (11C 4nfT>
T (n2\3 4 3 )
we find
2 2
g (pw) = = .
2 (11 4n 2 11 4n
1+g2W(?CA—TfT)ln;9/,u 1+(4QT)2<?CA_T]FT>1“3”2/'“2
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19 THE HIGGS MECHANISM

19.1 The Linear Sigma Model

19.1.1 Minimum of the Potential
To find the minimum of the potential

2
o 75 N
%4 — T H2 - 4’
(#)= -5 +79
we need to solve
VV(F) = -+ 1626 L0,
Obviously, there is one extremum at $ = 0 and one at

2

9‘7)2 =7=’<;T>(2)-

Obviously, there are many vectors (;30 that obey this definition, since it only fixes the length of the
vector to p/vA. Thus, all vectors 50 lie on an N-dimensional sphere. Since V tends to +oo for large qg,
it has a minimum at q§ = 50 and a maximum at $ = 0.

To be specific, we chose 50 not to be an arbitrary vector pointing to that sphere, but one specific of
them. It is conventional to choose

b = (0,0,..,0,v),  vi=u/Va

19.1.2 Lagrangian in Terms of Deviations from the Minimum
We want to plug

q_5 = (ﬁ(x),v + a(x))

into the Lagrangian
1, 2 wrs, Ao
— (Al o227 24
L=5(0"9) +5 ¢ - 70"
Term by term, we find

2(049)" = 2 (0477 + 3 (0%0)?

2_} 2 2 2 2 2
%d)z=7(ﬁ2+(v+0)2)=%(ﬁ2+v2+2v0+02)=%<ﬁz+ﬂ7+\/—;a+az>
2 4 3 2
K (KK 2
—zn +2&+\/IU+26'
2,—)

—Zgt= —%(ﬁz +W+0)?)? = —%(ﬁ4+21?2(v+a)2 + W+ o))

A -
= —Z(n‘* + 272 (v? + 2vo + 0?) + v* + 4v30 + 6v?%0% + 4vod + %)

Al N 2 2 44 61> 4
=__(nuzﬂz(“7+_“a+az)+“_+ig+igz+_§as+g4)

4 N A2 )3/2 A V
A, K. ptoowd o 3p?

o4 P2 2 Top o B K OM o 7.3 L a4
471 T —uvAnco 0 i \/ZU > o° —uvio o



Thus, the whole Lagrangian reads

4

oo (58 (5B (-5 (- )

A A A
—uﬁa3—uﬁﬁza——ﬁ4——ﬁzaz——a
2" 77 4
Iy A, AL 2
=—(6”7T)2—I— (6“0)2+ﬁ—y o2 —iad yﬁnza—zn‘*—znzaz—za“.

We can drop the constant term p*/44, since constant terms are of no interest inside Lagrangians.

19.2 Goldstone’s Theorem

19.2.1 Proof of Goldston’s Theorem

Consider a theory of fields ¢;, which we can write as a vector 5 = (¢4, ..., ¢;), with a Lagrangian of the
form £L =T —V, where T contains all the terms with derivatives and V all terms without any

derivatives. Let 50 minimize V, that is

a .
vV (®)|. 53, = = V(¢)|$_$ =0 Vi.

d¢;

Expanding V about this minimum (50 yields

N = d -
V(@) = V(o) + FV(qb)L (- o)
i bd=¢o

1 0 0
2 a¢l a¢} . (@i — Po) (¢ — b))

= M2
= V(o) + Z 3%, a¢

The coefficient M2 is a symmetric matrix whose eigenvalues give the masses of the fields (since they

(@i — o) (@) — boj)-
$=¢,

are the prefactors of the squared fields).
A general continuous symmetry transformation has the form
¢~ &+ €A($),
where € is an infinitesimal parameter and Z(q,’j) a function of all fields ¢; (that s, A is chosen such that

the Lagrangian is unchanged; the fields on the other hand are arbitrary). If a Lagrangian is symmetric
under this transformation, it is symmetric under this transformation regardless of what kind of

function $(x) is. In particular, it must also be symmetric under this transformation, if the fields are
constant. Then, the terms with derivatives in the Lagrangian vanish, T = 0, and the potential alone
must be invariant under this transformation:

V() =V (d+eh(d))

V(6 +eB(¢))-v($) L

= eAl-(J))) eAi((Z;)

v($) «
0P, 0

o £i(4)

206



0 0

39,96, V(o).

0 = % (Al(@ aggf)) = 6Ai(q_5) av(J)) + Ai(‘l_;)

dp; J¢;
If we now plug in (,5 = (f)o, we find

a8:(9) ‘6V($)
0 |.. . 09y

$:$o

+0(F0) =2
i 0) 4

o a¢; 0o;
-3, b0,
=0 :Mﬁ

v($)

P=do

If the transformation (5 - 5 + EZ(QB) leaves qgo unchanged, that is K(qgo) = 0, this means that our
transformation is a symmetry transformation that is not broken, since it is respected by the ground
state.! Then, M]-Zi does not need to be zero to obey the condition above.

On the other hand, a spontaneously broken symmetry is precisely one for which its transformation
has the property Z((;ZO) # 0. In this case, Z(q_b)o) is a vector with eigenvalue zero, thus with mass zero.

19.3 The Higgs Mechanism

19.3.1 From Complex to Real Scalar Field Components
Consider the Lagrangian

1
L= _Z(Fu%/)z + |Du¢|2 - V(¢),

where ¢ describes a vector, the components of which are the complex scalar fields ¢;. Let the
potential V be such that this Lagrangian is invariant under a local gauge transformation

¢i(x) » (1T +ia%(x) t%);;0; (x).
Obviously, the dimension of the matrices t* must match the number of scalar fields ¢;.

Itis convenient to write the ¢; as real-valued fields; we can always write n complex fields ¢4, ..., ¢,, as
2n real fields ¢4, ..., $o,. To see how this works in detail, we are now going to consider the relevant
examples, namely SU(2) and U(1).

First, consider SU(2), that is t* = ¢%/2 are 2 X 2 matrices and the vector has two complex
components. Let us now express the two complex components by four real components ¢; as follows:

¢ = <¢1) R i<_i¢1 - ¢2)
0P V2\ ¢4+ ics
Admittingly, this definition of the four real components ¢; is quite awkward, but note that we simply
have split the complex components ¢, ¢, into its real and imaginary part, absorbed minus signs into

those unknown real and imaginary parts and arbitrarily numbered them in a weird order. It is just,
that the results will appear most conveniently in this way.

The transformation rule given above for the complex fields now reads in terms of the new fields ¢;
=iy — ¢ = (L +ia®tiy) (=i — P2) + (1 + ia%) (s + igh3),
$s i3 > (1 +iat3)(—idy — P2) + (1 + ia®t3;) (s + igh3).

1 For example, for N = 3 and the choice (50 = (0,0, v), there is a single rotation, the one around the z axis,
which leaves ¢ unchanged. This symmetry is not broken. However, the rotational symmetries around the
x and y axes change our choice of ¢, therefore those symmetries are broken.
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The second Pauli matrix is imaginary, the first and third are real. Let us therefore introduce @ = 1, 3
and write a%t® = a%t? + a?t? (sum over a = 1,2,3 and @ = 1, 3 implied). Then, the first term is
purely real, the second purely imaginary. With this notation, the change of —i¢p; — ¢, (the difference
of the transformed —i¢p; — ¢, and the old one) can be written as

8(—ipy — ) = iaat{l1~(_i¢1 —¢2) + ia’atilz(fibzt +ig3)
= a’t{1¢, — ia%t{i ¢, — a2t122¢§ + la%tiy Py o
+a%tfi ) — ia’t] ¢, — a’tih s +ia’t ¢,
We have arranged those eight terms in such a way, that the first four terms are imaginary and the

second four terms are real. Since the ¢; are real, the first four terms need to be the correction to —i¢,
and the second four terms need to be the corrections to —¢,. Hence,

8¢y = +ia’tf dy + a®tfi ¢, — iaPth,ds — athds = —a’Ti¢;,
8¢, = —a®tl oy + ia’th P, + a%tdds — ialtl ¢, = —a’T3;¢;,
83 = —ia’t3 Py — alts d, + ia’ts,ds + a¥td ¢, = —a’TSi¢;,
Sy = +atd ¢y — ia’th by — athps +ia’td Py = —a T,

To get the formulas for §¢3 4, we could simply change the first index of the generator metrices from 1
to 2 and add a global minus sign. Also, we defined 4 X 4 matrices T} witha = 1,2,3and i,j = 1,2,3, 4.
We can read off their components from the equations above as follows, using t* = ¢%/2:

0 —t111 0 t112 0 0 0 1
p_| o 0 -t 0 | _1f0 0 -1 0
0 t3, 0 —tzlz) 20 1 0 O
_t%I 0 t%z 0 -1 0 0 0

—itlzl 0 it122 0 0 0 1 0

T2 = 0 —ith; 0 itf _1fo o0 01

it2, 0 —it3, 0 2{-1 0 0 O
0 —t131 0 t132 0 -1 0 0
|t 0 -t 0 | 1[1 0 o0 o0
0 t;, 0 —t3,] 210 0 0 1
—t231 0 t232 0 0 0 -1 0

Note, thatall those matrices T are real and antisymmetric. Since §¢; = —a®T;}¢;, the transformation

rules for the real components ¢; read
¢i=(1-a®)THe;  i,j=1,234

Let us consider the other relevant example, U(1). In U(1) the complex components of ¢ transform as
¢; > (1 +ia(x)Y);j¢;(x), where Y is the U(1) charge (a real number). That is, §¢; = ia¥§;; =
iaYT;; and we can redo the derivation above by replacing t{"j - Y4;;. Since Y is real, we should use a

real matrix for that, that is, t* or 3. No matter, which one of those we take, the corresponding matrix
Tis

0 —Yé1, 0 Y61, 0 =Y 0 0

T = Yé,4 0 -Yé;, 0 _[Y 0 0 0
0 Yé,q 0 -Yé,, 0 0 0 -Y

-Yé8,, 0 Yé,, 0 0O 0 Y O
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with the corresponding transformation
¢; = (1 —a(x) T;;)p;.

Thus, effectively, we simply replace t{lj - iTi‘]‘- in the transformation rule; however, after the
replacement the indices i, j take on the double number of values.

Also, in absolute square terms, we can write, according to our definition of the real components above,

1
617 = 97) = I b1 + ¢l s = 5 (91 + i) (P1 + i) + (s + ids) (s + i)
= (97 + 03+ 63 + 9] = 597
2 1 2 3 4 2 ’

where the ¢ after the last equal sign would be the real vector ¢ = (¢4, P, P3, P,). Combing these two
results, we can replace

) . Pr) _ (1 +id
gl where D, =g, +igagee,  ¢=(3)= (D100 ec
by

1 2
E(Dﬂqs) , where D, = 9, — gAsT*, ¢ = (¢p1, s, D3, 04) ER.

We use the same symbols ¢ for the vector and ¢; for its components, no matter whether they are real
or complex. It will usually be clear from context, which one we mean (for example, if there is a T
around, the field ¢ is meant to be scalar; if a t* around, it's meant to be complex ¢).

19.3.2 Expanding about the Vacuum Expectation Value

Using our considerations of expression a complex field vector ¢ by a real field vector ¢ of components
¢; by using the matrices T¢ from (>19.3.1), we can write the kinetic term of the scalar field Lagrangian
as

1 1
D8I = 5 (Du#)” = 5 (0,0 — 945T?9)’

1 2 _1 H b 1 a(ra 1 arra Hrmb
=~ (0u0)” — 5945 (3u0)(T"$) — = gAL(T $) (3" ) + 5 gAL(T*$) g AL (T b)
1 2 1
=>(9:9)" — 945 (0,0:)(Tj¢5) + 5 9> ALAL (T ) (TP ).
Note, that there is a dot product between the vectors d,¢ and T b ¢ in the intermediate step.

We treated the fields of the linear sigma model from section 19.1 as classical fields; we found the
minimum at ¢ = ¢,. Consider the classical limit # — 0 of the vacuum expectation value of a single
field:

lim (0110) = Jimy [ D6 g exp (5 [ a*x £181) = o

Only the stationary value of ¢, namely its value ¢, where the Lagrangian has its minimum, dominates
the path in integral. In the classical limit A — 0, we can even write the exponential as a §-function
6(¢; — ¢oi)- Thus, in the quantum case, it will at least give us the correct classical limit, if assume that
the minima v of the potential are the vacuum expectation values. After all, the fact that the vacuum
expectation value gives the minimum of the potential, does seem quite reasonable.

Let us therefore write the vacuum expectation values (i. e. the minima of the potential) as

(Qpl2) = ¢o.
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Expanding around this minimum like ¢ (x) = ¢, + ¢'(x), we find for the kinetic terms of the fields ¢;

1 1 1
5 (0.9)" = 5(0.0")" — 944(8.00) (!} (b0 + #))) + 5 92454 (T(bo + ¢1) (T* (o +¢1)

1 1
=5 (0:9")" — 944(3,9) (T b0)) +5 8T (T §0) AZA) + O((fields)?),

—m2
=Mgp

where we omitted terms cubic and quartic in the fields ¢/, A.

Note, that in the Klein-Gordon theory, the sign of the mass term is negative, whereas it seems to be
positive of the gauge bosons. However, since AZA’; = A%AY — A%A%, the physical spacelike
components indeed have an additional minus sign. Also, the masses m2, (the diagonal elements of
m2,) are positive:

méa = g*(T%he)* 2 0 (no sum over a),

since the T® are real. In principle, however, they may be some particular generator, that leaves the
vacuum value invariant, such that T%¢, = 0, and the gauge boson remains massless. Let us also define
F%:=T%®, or, equivalently, F{* := T{i¢,;.

19.3.3 Only Goldstone Bosons contribute to the Vertex with the Gauge Boson

The second term of (Duqb)z/z describes a vertex between a single gauge boson line and a single scalar
field line:

~gAG(0,9") (T $o) = —gA49,(d" - FP).

=Fb

We could put the derivative outside the parenthesis, since the vector F¢ is constant. By the properties
of the scalar product, only components of ¢’ parallel to the vector F? will survive in this term. Since
our transformation rule for the vacuum expectation value reads

Po(x) > (1= a®()T)pg = pg — a®F4,

the direction of the vector F¢ is the direction in which our transformation shifts ¢,. Recall, that in the
linear sigma model, we chose ¢4 = (0,0, ..., 0,v) and the describes deviations from this point by ¢ =
(7T, v + o). For any rotation R = 1 + §R, we then have!

SRin
OR,y
(mv+0) (bR¢py) =(@v+o0) v :
6RN—1,N
0

The components of §R ¢, which do not disappear correspond pricelessly to the components of
(7, v + o) which contain the Goldstone bosons 7; those are the only components of the vector

1 A general infinitesimal three dimensional rotation about an infinitesimal angle 6 and an axis 7 is given by
the matrix
0 —-6n, 6n,
1+6R=1+| 6n, 0 —0n, |
—-0n, 0On, 0
Thus, for the vector ¢, = (0,0, v), we find
on,
6R¢py=v (—0 nx>,
0
with no z-component.
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(7T, v + o) which contribute. By analogy, the components of ¢’ that contribute to ¢’ - F? are precisely
the Goldstone bosons.

19.3.4 The Vertex Factor of the Gauge Boson Goldstone Boson Vertex
Recall, that Goldstone bosons are massless. Thus, only the massless components of ¢’ contribute to
the vertex described by

_gAg(aud),)Fb = _gAg(auqu{)Fib'

It can be drawn as a Feynman diagram like

We can derive the Feynman rules from this interaction term as in (>18.1.4) by considering the Matrix
element of the term with other fields that can be around:

~igF? 0, (0] (- AXCe) B (1)) (44(2) 0,61()) [0) = ~igFP Dt (e = 2) 0 Dp iz = ).

Here, D ;; is the propagator of the scalar field from section 4.8 (times §;;). It obeys Dg;;(x, — z) =
Dr;j(z — x;) and since we have chosen the momentum k to point into the vertex, we should choose
the latter Feynman propagator, describing a particle propagating from x, to z. Then, using the explicit
formula from section 4.8, we can perform the derivative d,, (that is a derivative with respect to z,)
and get

—igFp (—iku) D\ﬁzc(xl —2) 0, Dp i (z — x3) = —gkuFib D\Fl‘l,l:lc (X1 — 2) 0,y Dp ik (z — x3).
Thus, the Feynman rule for the gauge boson Goldstone boson vertex is
—gkHF?,
19.3.5 1PI of the Gauge Boson
If we also treat the mass term

2
Map
2

1
E(Dﬂqs)z = o =22 g2 4t 4 O((fields)?)

as a perturbation, the leading-order contributions to the 1PI of the gauge boson propagator read

or, in terms of mathematics,

i k#kY
1Pl = imz,n* + (—gk"F) 1 (gkVFP) = im{,n*" — igZFaF”—k2 =img, (n‘“’ -

kH*kY
)

—m?2
=Mgp

Note, that this is an exact equality, since the 1PI contains only these two diagrams arising from
interactions with Goldstone bosons only.
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19.4 The Glashow-Weinberg-Salam Theory of Weak Interactions

19.4.1 SU(2) Invariance yields three massive Gauge Bosons

The starting point of GWS theory is a SU(2) gauge field coupled to scalar fields ¢;. Let us use the
fundamental representation of the t’s, where t* = g% /2 with the Pauli matrices ¢. Since the Pauli
matrices are two dimensional, we have two scalar fields ¢4, ¢,.

Let the (complex) field ¢ = (¢4, ) acquire a vacuum expectation value (which minimizes the
Lagrangian) of the form

1
o = E(g)'

Expanding ¢ = ¢, + ¢’ and plugging this expansion into the squared covariant derivative D, ¢ =
(6” + igAzt“)qS, the term which we can read of the mass from reads

10,8]" = (3, + igA%e®)o|* = (3, + igAZe<)p) (9% + igAle®)e
1
= — ¢T(igA%t?) (igAht?)p = - + gz(;bgtatbgboAﬁA’; o=t ZQZ ol o ACAY + .

Here, we neglected terms with ¢’, since those are not mass terms for the gauge boson. In the last step,
we used

1

1 1
P AZA} = E{ta,tb}Af;A‘g = 8{aa,ab} ALAL = Z(S‘”’ ALAL.
=28§ab

Thus, the gauge boson fields A7 have received a mass

1

1
mj = Egqugqbo = Zgzvz-

SU(2) has 22 — 1 = 3 generators, thus there is a gauge boson for each index a = 1,2, 3. All of them
have the same mass my.!

19.4.2 Including the massless Photon — Kinetic Term of the Scalar Field (Explicit Derivation)
To include the massless photon into the formalism, we need to construct a Lagrangian, which Is
additionally invariant under a U(1) symmetry, that is under a transformation

b — i@t eiB/2¢,

where, again, t* = ¢%/2. The respective covariant derivative will be

1 This does not have to be the case. It was due to the property t%t? ~ §%, which is a specific to the
representation of t* as the Pauli matrices. Other representations may well have the property that, for
example, t3t3 = 0. Then, the third gauge boson stay massless. Indeed, this is the case for real fields ¢; in
the adjoint representation, where (t%),. = —if*’‘ and hence

(Du¢)a = ud’a + igAZ(tb)ac¢c = aud)a + gAZfbacd)c
1 2 1 1
d E(Dud)) =+ E(gAZfbaC(pc)(gAgfdaed)e) =+ Engadefabcd)cd)eAz.AZ-

Assuming ¢, = (0,0, v), thatis ¢, = v &5, yields

1 2 1

5 (Du¢) = 4 Eg2v2fad3fab3AZAlé.
Recall from section 2.2, that £9%¢ is totally antisymmetric (in fact, since in this case the indices take three
values, % is precisely the Levi-Civita symbol). Hence, there is obviously no mass term ~ AﬁA’; and the
third gauge boson remains massless. In this way, we could describe two massive W bosons and a massless

photon and thereby unify weak and electromagnetic interactions. Indeed, this model was a serious
candidate for that purpose; however, nature chooses to have a Z boson as well.
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i 4
D, = 9, + igA%t® + %Bﬂ.

Using this covariant derivative, we find

|Du¢|2 = |(9, + igAft® + ig’BM/2)¢|2
=((0, +igd;t® +ig BM/Z)(;b) (6 +igA,t’ +ig'B /2)¢
= ¢1(0, +igA%t® + ig’BM/Z)T(B“ +igALt? +ig'B*/2)¢
= ¢1(0, — igA%t® —ig'B,/2) (0" + igAkt® + ig'B*/2)¢
= ¢1(0,0")¢ + ¢1(0,igAlht? + 3, ig'B*/2 — igALt®d* — ig'B,/2 0")¢
+ ¢ (g2t tP ALA} + gg't* ALB* + g'*B,B* /4)¢

We have split the last expression into three parts. As explained in section 18.3, the latter two of them
will equip the gauge bosons with a mass; when we plug in ¢(x) = ¢y + ¢'(x) in the last term, the

mass arises directly from the term qbg (third term)¢,. The second term yields a vertex between ¢' and

the gauge bosons, that finally also yield a contribution to the mass term, by the mechanism of section
18.3.

Since the second term is “only” needed to ensure the right form of the propagator of massive gauge
bosons, it is sufficient to consider the last term only to find the masses of the gauge boson. Let us
therefore consider this last term only.

The last term itself contains another three terms inside its bracket. Consider those three terms within
the last terms individually, after plugging in ¢ (x) = ¢, + ¢'(x) and considering only terms without
any appearance of ¢’ (note, that the first one is the same as in (>19.4.1)):

1
od (g2tatP A2AN ) o = ggzvagAg,

! 1 ! 0 1 ! 1 !
93 (99't"A5B")po = 2 99'v* (0,1)(0®) () ALB* = 7 99'v? o ALBH = — gg'v? 4BV,

1
0 (9" BuB* /4) o = 5 9" v*B>.

We can give the combined result in the following form:

1 2
|Du¢|2 = "'+§v2 (gz(A}l)z +92(A;2¢)2 +(—gA3 +g’B#)2) o= m“bAZA’lj + e

2
where

b

g 0 0 o \"
vi[ 0 g2 0 0

2 _ _
mab - T 0 0 gz _gg, Afl = B[.L

0 0 -gg g°

19.4.3 Including the massless Photon — Kinetic Term of the Scalar Field (Alternative Derivation)
In principle, we have done the calculation from (>19.4.2) already in a more general way in section
18.3. What we found was, that the mass term reads

2
Map

2

AﬁAz: mczlb = ngiaFib’ Ff = Ti‘]l'fl-"oj-

We computed the matrices T® in (>19.3.1) for the SU(2) and U(1) case. In GWS theory, we have the
combined symmetries SU(2) X U(1). We can account for that fact by simply letting the SU(2) indices
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a = 1, 2, 3 take an additional value 4. Then, tfj will be the U(1) generator Y §;;. The corresponding real
“generator” T{} is then precisely the matrix that we simply called T in (>19.3.1). In GWS theory, we use

the U(1) charge Y = 1/2. Also, the U(1) coupling constant g’ differs from the SU(2) coupling g. We
take care of that by writing

m2, = g®g°FAFP  (sum over i, but no sum over a, b), a,b,i=1,2,3,4.

When the complex scalar field reads ¢, = (0,v)/V2, its real counter part reads ¢, = (0,0,0,v),
according to (>19.3.1), that is ¢; = v8;4. Then, using the matrices T* with T* =T from (>19.3.1),

ai

Q o o

0
( F)ai = g%F% = g°Tld, . = ara — v 9
g g ri g L]¢O] Vg lig 0

3 (no sum over a)

o ook
o oo o

I

0 —g

Note that the row index is a and the column index is i. It is kind of a coincident, that the matrix g*F/*
is square, since a and i only take on the same number of values in the special case of GWS theory.

Then, we can write the mass matrix as

m2, = (g°F®)(gPF?) = (gF)*(gF)Y = ((gF)(gF)T)"

ab 9 ab
g 0 0 0\/g 0 0 0 g 0 0 0
_v*[[0o g 0 offo g 0 o0 _vlo g* 0 0
4110 0 g 0Jlo 0 g —-¢ 410 0 g* -gg
0 0 —9g 0 0 0 O 0 0 0 _ggr grz

Obviously, this exactly corresponds to the final result from (>19.4.2).

19.4.4 Including the massless Photon — The A and the Z Field

To express the Lagrangian in terms of mass eigenstates, we want to diagonalize the mass matrix m2,,.
Obviously, the upper left quarter of this matrix is already diagonalized. Thus, we only need to
diagonalize the lower right quarter:

, Eigenvalues: Eigenvectors: 1 ,
M = (_g , g,g ) = 0 @9 = S:= — (g g ,).
99 9 g%+ g7 (9,—g") Vg tyg

Thus, D = S~*MS is the diagonalized matrix to M and we can write

2

A% - _1 (A% _1 (A%
(A3,B#)M(Bi) = (43,B,) SS~'MSS 1(33) = (43,B,) SDS 1(32)

(4%B,)S = —(g'A} + 9B, g4} — g'B,).

1
Jgit+yg

Let us abbreviate

1 1
A, =———(g'43 + gB)), 70:=——" (gA3 - g'B
n 2t g7 (g pTg u) n it g2 (g w—4 u)
and we find

2 1 2 2 0 0 A
=g+ )5 2) ()

214



Now it is obvious, that A, is massless and Z? has the mass m% = v2(g* + g'?)/4. For future reference,
let us also invert the deflnltlons of Ay, Zu'

1 1

- (o' 0 - - _ '70
W(g A# +ngl)' B# - W(g‘qﬂ 9 le)'

a3 =—

Since

2 , 2
(L) N (9_> —1
/gZ _|_g12 /g2+g!2
it is convenient to define the weak mixing angle by

cosf,, = 9 = sin 6 9

This definition allows us to write
AN ( cos@,  sin GW) Z]
B,)  \-sinf, cosb,/\A,)

ZY\ (cos 6, —sin 9W> A3

A,) \sin@, cosé, /\B,
19.4.5 Including the massless Photon — The W Fields
We define

1
W, ——Al+A2
i = (41 7 i)

1
o A=W A= ()

— \/_ (W
Hence, the mass terms in the Lagrangian take on the form
10,01 =+ 502 (g2 (4" + (42)") + (g2 + 9 (20)°)
=+ %gzv2 W, Wk +%(g2 + g’z)vz(Zf})Z - mi, W WHH T (ZO)

Recall from section 4.7, that complex boson fields have a mass term —m?¢*¢ in the Lagrangian. Note
also, that W~ = (W*)*. Thus, we needed to introduce the fields W in favour of A,l;2 to get the right
mass term (also the sign for the physical, spatial components is correct: W, W*# = Wy W0 —
W, W*; same for the field ZJ).

19.4.6 The Covariant Derivative in Terms of the New Fields
Let’s find the covariant derivative

D, =9, +igA;it*+ig'YB,
in terms of the new fields Wf,ZB and Ay Introducing
tf =1t +it? = tt+t- = 2tt, tt —t= =2it?

and plugging in the formulas for A}l’z in terms of the fields W#i from (>19.4.5), the first two terms of
the sum over a look as follows:

igALtt +igAZt? = (W +WHET+ ) +—— ™G (W -WH)t -t
ig -
= E(WJH + W, t).

215



By the formulas for Af; and B, in terms of A4, and Zﬁ from (>19.4.4) we find for the remaining terms

igA3t® +ig'YB, = ig(cos6,, Z0 +sin6,, A,)t® + ig'Y(—sin 6, Z2 + cos b, A,)
= i(gcosb,t>—g'sinb, Y)Z) +i(gsinb, t* + g’ cosb, Y)A,
i(gcosb,t®—g'sinb,Y)Z) +igsinb, (t>+Y)A,.
= =

—e

In the last step we used that, by the definition of 8,,, it holds g sin 8,, = g’ cos 6,,. Let us now identify
the electric charge e = —g sin 6,, > 0 and the charge number of the electron Q = t3 + Y = —1, such
that the coupling of the electron to the electromagnetic field falls into its conventional form.

The prefactor on,(} can be brought into the form

g*t> —g?Y (g% +g')t> — g (Y +t5)
1g2+g12 /92+g12

/ 2+ 12 !
Jg?+g'%t3+g'siné,, Q =—C0;qe t +g g 7 g \/%siner
w g +yg

gcosf,t3—g'sinf,Y =

g
cos 6,

(t3 —sin?46,, Q).

Thus, all terms together, read

tg
cos6,,

tg e
Du=6u+ﬁ(l/l/;ft++l/l/ﬂt ) -

where Q = —1 for the electron.

(t3 —sin? 6, Q)Z) — ieQA,,

19.5 Coupling to Fermions

19.5.1 Left-Handed Electrons and Neutrinas
We can describe left-handed electrons/positrons e; and neutrinos v;, together as a spinor

Y- E = (Zﬁ)

Doing so, we want to find E; iBE; . Using the form of the covariant derivative in terms of the new fields,
we find

E,iDE, = E iy*(9, + igA%t® + ig'YB,)E,
ig
cos 6,

_ i
= E iy* (aﬂ + \/—‘%(W,;H + W) - (¢% —sin? 6, Q)Z] — ieQAu> E,.

The term with the W, can be given as

_ [ 1 _ 1 _
Eiy# _g/—(W+t++W't_) E, = gW' |\ ——F=Ey*tTE )+ gW | ——=Evy*tTEL),

=:];/‘u ::]‘;/”

where?

1 When we wrote down the Feynman rules for QED in section 8.2, we only considered real polarization
vectors. In general, they can be complex and the outgoing photon will receive a complex conjugate
polarization vector ¢, instead of ¢,. So will the W= boson. Consider the vertex ~ %+]VJrV” ~ v, Wte, . It can
connect an incoming W™ or an outgoing W~ to a fermion line.
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1 0 1\ Vv
th_ T s 5 P el\ _ _ - .u
w \/Z (VLt eL)y (0 0) ( e ) \/EVLV €r,
- 1 0 0\ /YeL 1
H = ——(v,. e u E_ - — g, yH
]W \/E(VL, eL)y (1 0) (eL ) \/EeLy V.
The Z;) term yields
E iy#* (— 19 (t3 —sin? @ Q)Z°> E,=gZ0 ( ! E y*(t3 —sin?6 Q)EL>.
cos @, WS #\cos 8, W

=:]5'
IfweuseY = —1/2, we find
1.1 o0 1 0 o
_ +3 _ = _
=t +Y_2(0 —1) 2 (o —1)'

which gives the right charge numbers for the neutrino and the electron. Thus, we can write the current
as

= (36 ) -sa ()
1
~ cos 0,

1_ _ 1,
(EVL)/”VL +ée vt (—E + sin HW) eL>.
Finally,

— — 1%
B iy#(=ieQA,)E, = eA, (Ey*QE), Iy = eyt () °) () = —artes

=:]EM
Using these definitions for the different currents, we can write
ELiDE, = ELiBE, + g(W, T + Wit + Z%) + eAuJb.

19.5.2 Right-Handed Electrons
Since the right-handed electrons are not allowed to interact with the W, fields, we simply set t* = 0

for them. Thereby, they become singlets under the SU(2) transformation: i - ez. We then want Q =
t34+Y =Y = —1. This yields

i
egpiDeg = égidep + egxiy# (cosg sin? 6,, QZ; — ieQAu) er
w

sin? @

w —
ep | +eA, (—eryteR).
cos 0, R) u (—egyteg)

::]’Zl

= e_RiaeR + ng? (e_R)/“

—. gk
_']EM

[t is conventional to combine the electromagnetic currents from the right- and left-handed electron:
]SM,mt = —egyteg — e yte, =: —eyte.
Note, that there are no right-handed neutrinos at all (in the standard model).

19.5.3 Left-Handed Quarks
Also different left-handed species of quarks can be written as a doublet. Consider for example an up-
and down-quark doublet

%= (q)
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This does not change anything for the WMi couplings; with exactly the same derivation as in (>19.5.1),
we find

quiBqy = -+ gWr It + gWo )t + -,
where

W= _iﬁLY”dL W= _iaLy#uL-
w NG ’ w NG}

IfweuseY = 1/6, we find

1 1
o=r+v=3( *)+5=(0" 1)

which gives us the right quark charges. Using this Q, the Z;) term yields

_ . _ . g .
quibq, = -+ qiy* (— cos0., (t* —sin’ 6, Q)Zﬁ) q+
_ 1 .
=+ g7 (cm/“ cosb. (t* —sin’ 0, Q)qL) +

=]’Z‘

where

1= @t (56 %) -smeen () _95)) (@)

1 _ 1 2 - 11
=c059W (uLy” (E_§Sm 0W>uL+dLy“ (—§+§sm 6W> dL>.

Finally,
qiPqy = -+ Guiy*(—ieQA,)q, = - + e, [@uy"QqL),
=:]£.LM

where

_ s 2/3 0\ uy_2_ 1
]SM = (uL; dL)V”( 0 _ 1/3) (dL) = guLV#uL —gdLV#dL.
19.5.4 Right-Handed Quarks
Right-handed quarks can be treated in the same way as the right-handed electrons from (>19.5.2).
Simply sett® = 0and Q =Y = 2/3 for the up quarkand Q = Y = —1/3 for the dg quark. Then,

i
UgiDug = Ugidug + UgiyH (Cosg sin? 6,, QZ,) — ieQAu) Ug

w
. of 2_ #sinzew 2 _ "
= Ugidug + gz, —§uRy 050 ug | +eA, (guRy uR>,
w ~ .

=:yh =Jgm

- - - ig
driBd, = dpiéd d ”(
riDdg ri€dp + dply w050

sin6,, QZ,) — ieQAu> dg

w

- of1= #sinzew 1.
= deé'dR + gZ[l. ngy COSG dR + eA# (_ngy dR)
w [

=:Jh =tJEm

Again, it is convenient to combine the electromagnetic currents from the right- and left-handed quarks
as follows:
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2
—UgyHtug + - y*u, =§uy u,

up-quarki g =3 :

1. 1. 1.
down-quark: ],’;Mlmt = —ngy“dR — §dLy“dL = —§dy“d.

19.6 Fermion Mass Terms

19.6.1 Notes regarding the fermion mass term (no reference in overview)
In QED, the fermion mass term is given by —mn. Using that y° is Hermitian, we find that so are the
projectors Pr; = (1 y®)/2. Also, since y° anticommutes with any y*, we find Pg ; y* = y*P¢. Thus,

- T
YriWrL = (PR,Lll’) YOPR,LIP = I/JJFPR,LVOPR,LIP = ¢+VO Py rPgr, ¢ = 0.
=0

From this we find that

PP = Pr + P Wr + Y1) = Yripg + Pry, + Y + P, = Yripy, + Pk
=0 =0

19.6.2 The need for the Scalar Field Coupling in Mass Terms

We know from 19.5, that for the left-handed neutrino-electron spinor €, = (v;, e;), the U(1) charge is
Y, = —1/2 and for the right-handed electron ey it is Y = —1. Also, for ez we used t§ = 0 in contrast
to E;, where t} = 0% /2. Thus, a mass term of the form —m(é,ep + h.c.) would not be gauge invariant
under a U(1) x SU(2) transformation:

—- — —_iyasad i —_inyasa —
—meéeg > —meé, e @ tLeTBVLeiBYre—Ia%R o £ —m g ep,
since tf! # tg and Y}, # Y.

A solution to the problem will be to include the Higgs field into the mass term; consider the term
—2.(E, - d)eg + h.c. The scalar field has, according to section 18.4, Y = 1/2 and t* = ¢%/2 = t%.
Then,

_)le(gL . ¢)eR N —Ae(éLe_iaatge_iBYL . eiBYeiaat]‘f(p)eiBYReiaatf%eR — _Ae(gL . ¢)6R'
since
—tf+tl+th=—-0%/2+0%/2+0=0, Y +YV+Ye=—-(—-1/2)+1/2+(-1)=0.

19.6.3 Mass Term for the Up Quark
If we plugin ¢ = ¢y + ¢’ into

—1, G plug + hec,

where ¢ = (0,v)/V2 = ¢, = v8,,/v2 and €? is totally antisymmetric, we find

Auv ab=a : 3 Au 2=a . 3
_EE Glépug + hoc. + O((fields)?) = — ﬁ — €% qfug + h.c. + O((fields)?)
Al et 4 b+ 0((fields)®) = — 22 % up + he. + O((fields)?).
= ——qjug + h.c ields)3) = —— 1, up C. ields
V2 V2

19.7 The Higgs Boson

19.7.1 The Mass of the Higgs Boson
Consider the Lagrangian
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L=|D,o|" + 12ptp — A(pT¢)’

and let us write the field ¢(x) in the form

1 0
) = U 5, 4 noy)

Here, U(x) is a general SU(2) unitary transformation (that is, UTU = 1) and h(x) € R a deviation

from the vacuum expectation value v, that minimizes the potential.! That is, we can give v as follows:
av ! 17 ! ‘u

_ — 24 _ t = ty 2 2P = =

Jgr K- 2(#)e=0 = dl=7=5 = v=r

Since h(x) is arbitrary and U(x) = e!®*®t* js an arbitrary unitary transformation (that is ?(x) is an
arbitrary function), the parameterization of the field ¢)(x) above in terms of U(x) and h(x) does not
lack any generality. Since the Lagrangian is invariant under SU(2) transformations, we can perform a
gauge transformation ¢ - UT¢ to eliminate U from the Lagrangian.

After this gauge transformation, the potential V can be expanded like (dropping irrelevant constant
terms)

-V = M¢‘L¢ /1(¢T¢)
=—(v+h)2——(v+h)4
_uz u 2 A/n 4
—7(ﬁ+h) ‘Z(ﬁ*h)

4

A
= —p?h? — pv h3——h4+%
mh _my s A,
= = VAR -2 ht,
V2

where we introduced the mass my, := v2u = ¥2v in the last step.

19.7.2 Coupling to Gauge Bosons
Recall from (>19.4.2), that the covariant derivative

ig'
D!l = au + l'gAﬁta + 7Bu

leads to

ID.o|” = ¢1(8,0%)¢ + BT (8,igAt? + 8, ig'B*/2 — igA%t®d” — ig'B,/20")¢

1 This parametrization is completely general. Using U(x) = exp(i¢p'*t*) with a = 1,2,3 and the SU(2)
generators t* = ¢%/2 as well as the abbreviation ¢,(x) := v + h(x), we find

”%@4) = (L +igree + 0<¢'2>)%(;,’4)

_ <1+iq,')'1 ((1) (1))+i¢)'2 (0 :)i)+i¢'3 (1 )+0(¢’2)>\/—(¢4)

\/1_<<¢4)+l¢/1 (¢4)+l¢12( l¢4)+l¢/3( b0 >+O(¢r2))

1 2
= (e o =5 () 0w

In the last step, we renamed the fields according to

¢’1¢4 = —¢, ¢’2¢4 =—¢,, ¢’3¢4 = —¢s.
In this way, we can absorb the Goldstone boson fields ¢1, ¢2, ¢3 into U.
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+ ¢t (g2t P ASA} + gg't* ALB* + g'*B,B* /4) .

For the investigation of the masses of the gauge bosons, it is sufficient to consider the last term only,
due to the Higgs mechanics of section 19.3 (a few more words about that can be found in (>19.4.2)).

Back in (>19.4.2), we expanded ¢ (x) = ¢, + ¢'(x) with ¢, = (0,v) /2 and then kept only the terms
that did not contain ¢'. Let us now see what happens with those terms neglected in (>19.4.2) for our
present “special case”! ¢'(x) = (0, h(x))/\/z. For this purpose, let us abbreviate the bracket of the
third term as X;;, where i and j are the indices of the components of the matrices t* — t;}. Then, since
X;j does not contain any derivative,

0

1 1
e h)j = 2 W+ W8 X, + W)y = 2 (v + WXy v+ 1)

) 1
b Xijd; =§(0,V+h)iXij( =3

1, h\?

If we neglect terms containing ¢’ or h respectively, we obviously just get ¢;rXij¢j = v2X,,/2. This is
exactly what we did in (>19.4.2). Does, we can copy our result from back then and find

1 2
DI =+ 502 (g7(a)" + g*(42)" + (~g43 + g'B") - (1+2)
ms 2 h\?
=k mWrw o+ = (2) )'(”;) '

where we used the result from (>19.4.5) in the last step.

19.7.3 Coupling to Fermions
Using the form of the field ¢ (x) from (>19.7.1), the fermion mass terms from section 18.6 to all others
in the fields read

_ A h
—A.(EL - p)eg + hc. = —T%EL(U + h)eg + h.c. = —meep (1 + ;) + h.c,

A - i} h
—24(G, - $)dg + hc. = —T%dL(u + h)dg + hc. = —myd, dg (1 + ;> +he,

A h
~A, PGl Piug + he = ——=€q¢ (v + Wug + h.c. = —m, T ug (1 + ;) + h.c.

V2

19.8 Generalization to Three Generations

19.8.1 Mass Terms of Several Quark Generations
In section 18.6 we constructed the mass term for the down quark as follows:

_A’d(qL * ¢)dR + h.C.

We now also want to include the other quark flavours, the down-types of which are s and b in addition
to d. Let us write a vector & = (d, s, b) (and later similarly a vector « = (u,c,t) for the up-type
quarks). Hence, q; becomes a vector of vectors g :

a= (1) = (S is),

1 Actually, this case is not so special as it seems, as argued in (>19.7.1), but rather quite general.
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In general, 1; becomes a matrix 1, providing different values for different flavour combinations in
the mass term, using ¢ = (0, X):

—@G Phadr = —1)(G - )y = —X LA dy = —X ddydp,  i,j=1,2,3.

Since /LM:; and /12/14 are - per definition - Hermitian matrices, we can write them in terms of a real
diagonal matrix D7 and certain unitary matrices Sy, R, as!

A =s,D2s8 Ata,=R,DIR, = A,=S,D4R}.

It can easily be checked that the last expression for 4, fulfils the two equations on the lef-thand side.
Using this expression together with the basis change

dR 4 Rdth dL g deL,
the mass term can be given as
~X ddydg = —X d(S;D4RY)dp - —X d,S}(S4D4R})Rydg = —X d Dydg = —X diD .

Using X = (v + h)/¥2 as in section 18.7 as well as m}, = D¥v/v/2 (no sum over i), we find the
standard form of the mass terms with the Higgs boson couplings:
- it i v T h o h
~Xdipid}=~— Z dipidl (1 + E) = —Z mi,dL (1 + ;).
L L

Exactly the same can be done for the up-type quarks; just replace every index £ with a « (for example,
R, — R,) and we find for the up-type mass term of section 18.6

S h
—€® @2 pi A up = —€PGIXSppAyupr = —X T A ug = = = —Zm;fﬁiuﬁ; (1 +;>.
7

19.8.2 2D CKM Matrix
If we consider only two generations, the vectors of quark flavours have two components, « = (u, c)
and 4 = (d, s). Hence, the CKM matrix V is a 2 X 2 matrix. It is unitary and generally complex.

A complex 2 X 2 matrix has eight parameters (one real and one imaginary for each of the four
components). The unitarity condition

* * 2 2 * * !
wi=(@ By gy=(llEb ety L1 o),

which are actually four individual conditions, one for each component, reduces the number of
parameters by four. The most general form of V can then be given as

_( cos@.e™ sin@, e’?
~ \—sing,ei@)  cosg, B |

We can further simplify this matrix by getting rid of the phases if we rescale the fields appropriately.
Consider for example the term 2, Vd, . Using the rescaling

¢, > e g, d, - e %d,, s, > e Bs,,

the phases simply vanish:

1 Note that the matrix AB has the same eigenvalues as the matrix BA (but different eigenvectors):
ABX = AX = ABX = AB™'B% = BA(BX) = A(BX).
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_ P cos @, et sin 0, e'# d; _ cosf, sinf.\/d,
wvd, =@, a) (— sin @, el@*r)  cos g, elB+Y) (SL> - e (— sinf; cos 9c> (SL)'

19.8.3 Three Generations of Leptons
For three generations of leptons, we promote the quantities from section 18.6 as follows:

e—-e=(eu1), von= (ve,v#,vr), E, - & = (/ZLL) = <(1EeeLL"1ZZL”TVLT)L)>
The mass term from section 18.6 then reads, using ¢ = (0, X),

—(€,- P heer = —AJ(El - p)eh = —XelAleh = —Xe der,  1,j=123.
As derived in (>19.8.1), we can write

A, = S.D,R}
and then change the basis of the fields according to

er = R.ep, e, — S.ep.

This yields for the mass term

—X e leq > —X &SI (S.D.R])R.ex = =X &,D,ex = —X ZEL'D;ie;;.
i

The last step is valid, since we know from (>19.8.1), that D, is diagonal. Using X = (v + h) /2 as well
as m{ = Div/v/2 we find the usual form of the fermion mass term:

L v h C h o
~x Y eipileh = ——(1+-) ) eipiieh = - (1+7) ) mizieh.
i \/E v v i

If we also change the neutrino fields according to
ny = S.ny,

we can write the change of n; and e¢; combined as

)-a-se-(32)

=&, - S.E = .

( eL L e“L SeeL

Thereby, and in contrast to the case of the quarks, the matrices S, and R, vanish in all terms of the
Lagrangian. We have shown it for the mass terms above, it is obvious for the kinetic terms (£,i8€,, and
erlfeg) and it is also obvious for the currents]g and],’:fM from section 18.5. It is almost as obvious for

+
he currents J,,*, for example

i 1= Iz Lot " L~ Iz
w == yte, - ——=nS.y 5e€L=_ﬁ”LLV er.

V2 V2
Note, that the reason why this works is, that we did not introduce a separate unitary matrix S,, for the
neutrinos, but used S, again. On the other hand, for the quarks we used different matrices S, and S
for up- and down-type quarks, which lead us to CKM mixing. There is no better reason for those
different ways of treating leptons and quarks than experimental evidence: We know from experiments,
that quark generations mix and that lepton generations do not.
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19.9 Overview of Electroweak Theory

19.9.1 The Electroweak Lagrangian
Let us denote the complete electroweak Lagrangian as

1 —
L=— ZF”CIVF‘;W + PiPY + Ligigs + Lyuk-

—FM%,FL{W/A} contains the Kinetic and interaction terms among the gauge bosons (W ¥, Z° and photon).
YiBy contains the kinetic terms of the fermions and their interactions with gauge bosons. Lijiggs
contains the kinetic term and the potential of the Higgs field as well as the interaction of the Higgs field
with the gauge bosons (and hence also the gauge boson mass terms). And finally, the fermion mass
terms are also called Yukawa couplings, which is why we group them together as Ly,,. Note, that this
is not the complete Lagrangian of the standard model, since QCD terms are missing.

19.9.2 Gauge Boson Terms
By “gauge boson terms”, we mean

1
R
where

F;ﬁ/ = auA?/ - avAﬁ - gfabCAZAf/ =: Fu%/ + fu%/' ﬁpﬁ/ = auA?/ - avAﬁJ f;ﬁ/ = _gfabCAZAfl'

Here, we want to include the field that we called B, in section 19.4, such thata =1, 2,3,4 and B, =
Af;. Since B, = Aj; is an U(1) gauge field, whose structure constants are zero, we define ¢ to be the
totally antisymmetric tensor, except any of its indices is 4; in this case, f %’ shall be zero.!

Let us now express this gauge boson term in terms of the mass eigenstates Wui,Zu,Au, using the

formulas
A% =sin6,, A, + cos 6, Z,, A} =B, = cosb, A, —sinb,, Z,,
Al = i(W- + W) e (W —w;h).
w=E e u W= g\ u

TERMSWITHa = 3AND a = 4:
Let us first consider the terms with a = 3 and a = 4:
F,ﬁ,lg’” + Epy F/ = F;’VF“;“’ + F#‘ﬁ,ﬂ‘” +2E3, Y+ flfi, g

Note that f,w = 0. First, we compute
Flfv = 0d,(sin6,, A, + cosb,, Z,) — 0, (sin O A, + cos B, Zu) = sin@,, F,, + cos 8, Z,,,
Flfv = 0d,(cosb, A, —sinb,, Z,) — av(cos Oy A, —sinb, Zu) = cos B, F,, —sinby, Z,,

where F,,, = 9,4, — 0,4, and Z,,,, = 8,Z, — 9,,Z,,. Thus, we find that

1 Instead, we could also use

1 1
_ZF;E/Fa#v _ZFI'WFMV
instead of —F#‘f,Fa”V/AL only as the gauge boson term in the Lagrangian. If we do so, then a takes on only the

valuesa =1, 2,3 and
EL = 0,A7 — 0,A; — gf“bCAZA,”,, F, = 0,A, — 0,A,.
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F3 EUV | F4 BHV _

FLF + Bp By = By FYY + Z,, 7Y,
Okay, we have turned the pure-F-terms into terms of the mass eigenstates. Let us now tackle the
remaining two terms, containing an f :

fiv = —gf 3P MAT = —g (4447 - ALAY)
— 5 (W + W)W =Wy = (W = W)W + W) = ig (W W = W W),

Hence, we find
ZFME;, ~3MV = Zig(sin Oy Fyy + cos b, Zuv)(W“‘W‘V Wk )
= 4ig(5in O FMVW+”W_V + cos 6, Zqu+#W_v),

where we used F,, = —F,, such that F,, W™*W*¥ = —F, W*¥W ™", Finally,

fj}féﬂv = —gZ(VV”"'VVv_ - %—m+)(w+uw—v —WHrW*)
= —207 (W Wy WHW Y — WEWSW W) = —27 (W) )2 = (W w)°).

Putting everything together, we find
1 1, - I - e
-2 (FaF + EAEY) = - 2 (FaE + EALEY + 2B fY + £ )
1 uv 1 uv
= —ZF”VF _ZZHVZ
— ig(sin6,, F,, WT*FW ™ + cos 6,, Z,, WHHW ™)

2
+ L () )2 = (W),

TERMSWITHa = 1 AND a = 2:
Let us now consider the terms witha = 1and a = 2:

ELEY + EALEY = FALEY + ELE" + 2R 1Y + 2F2 71 + FA A + FA R

Consider
By = = (.00 + W) — 0, (W + W) = = (Ws + W),
V2 V2
B = == (0,05 — W) = 0, (W — W) = == (Wi — W),
V2i V2i
where W = 9,W;* — 8, W,*. Thus, we find

S = 1
B + B R =5 (W + W)W + W) — (Ws, — Wi )W+ — W)
= 2W W*h,
Okay, we have turned the pure-F-terms into terms of the mass eigenstates. Let us now tackle the
remaining four terms, containing an £:

b = —aF e = —g(4343 - A32)
-_9 ((WM— — W,)(sin6,, A, + cos6,, Z,) — (sin,, A, + cos6,, Z, ) (W~ — m,+))

V2i
gcosl, . ~— y gsinb,, , _
=_W(mzv—z#m)—w(%,4v—,4um ,
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f2 = —gf™eagas = —g (4343 ~ 4143)

_%((sin 6y A, + cosb,, Zu)(Wv_ + W) — (%— + W,j‘)(sin 0, A, + cos 6, Zv))
gsinf — . g cos 6

=T R A -

TW (thWV+ - W/ltJrZV)'
where Wf =W, + W,}. Thus, we find

2ELAY = ig(W, + W (cos 0, (W=HZV — ZFW ™) + sin 6, (W+AY — A“VT/‘"))
=igcos b, (W + WEH)(WHZY — ZFW ™) + ig sin 6, (W, + W3 ) (W HAY — AFWY)
= 2ig cos 0, (W + WL)W™HZY + 2ig sin6,, (W, + W3 )W H4AY,
2B3F1 = ig(Wyey — Wiiy) (sin 6, (AW +Y — WHAY) + cos 6, (ZHW Y — W*HZY) )
= igsin 6, (W, — W) (AW — W*HAY) + ig cos B, (W, — W) (ZHWHY — WHHZY)
= 2igsin 8, (W, — WL )AFW Y + 2ig cos 6, (W, — WL )ZHW .
Here, we used W#Jf, = —W;,}—LL. and hence W;}{,X”V = —VI/u’,—L,X"“ for any tensor X*'. Using this identity
again, we can further simplify the sum of the two expressions above:

=1 FuUv =0 FUV
ZF!}V , + ZF#ZV 5

= 2ig cos 6,, ((Wyiy + Wb )W 42 + (W, — Wit ) 24 +)

+ 2igsiné,, ((W#; +WEYWHAY + (W — W,;;)AﬂvT/’fV)
= 2ig(cos 6y, 2" + sin 6y, A7) (Wys, + Wb )W+ — (Wyi; — Wi )W *+)
= —4ig(cos 6, Z" + sin 6, AV) (W W — WiIWH)

Further, we find

i
g’ . N2
= 557005” Oy Wz, -zZ,W,)
2

+‘?—2cos 6, sin6,, (W, z, — Z,W,; ) (W™ +A” — AFW ™)
2

g . —~_ ~ N2
+ 57 sin? 0y (Wi Ay — A W7)",
fiéfs”
9 N2
= 751n2 O, (AW — W FA,)
+ g% cos b, sin6,, (4, W,r — W,FA,)(ZFW Y — WHHZY)
2
g ~ ~ 2
+7cos2 0w (Z, W, —W,}rz,)".

The sum of the two terms above can further be simplified!

1 For the terms multiplied by cos? 8,,, we use
~(W7z, - 2,W;7) + (2,0 — W 2,) = —2(W2,)" + 2(2,W,) + 22,20 Wy W — 22,2V W, W+

= 8(ZV)ZW,[W+" + ZZHZVVT/V‘W‘“ - ZZMZVI/T/V+W+“ = 8(ZV)2W,[W+” - SZﬂZ"Wv‘W“‘.
To get this relation, note that

~ N2 _ 2 _\2 _ 2
) = ) = () 2mw (),
Z,ZVWEW = 2,7V (W, £ W,HWF £ W) = Z, 27 (W, W™ £ 2W, W+ WEW R,
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R+ FARY
2
= %eos2 O, (8(Z,)2 W, WHH — 8Z,ZV W, W)
2
9° _ _

+7sm2 O, (8(4,)2 W, WHH — 84, AVW, W)
+g2cos#,, sin @, (SZVAV%‘W+“ — 4A, 7YV (W WHE + WV+W—#))

= 4g2 cos? 0, ((Z,)* W, WH — Z,Z"W, W)
+4g%sin? 6, ((4,)° W, WHH — A, AW, WHH)
+4g2 cos ,, sin 6, (ZZVAVW,[W“‘ — A, ZY (W W+ W W),

Putting everything together, we find
1 1 pUv 2 pHv 1 +uv 1 1 FUV 72 FHv 1 F1 Fuv 1 F2 FUv
_Z(FIWFl + By F ) = _EWZWW - Z(Zﬁw 1 t2E0f ) _ZfIWfl - quvfz
1 - tuv

=-3 W W
+ ig(cos ,, Z¥ + sin 6,, AV) (W, WHH — W LW H)
—g?cos? 0, ((Z,)2 W, W+ — Z,ZVW, W)
—g?sin? 0, ((4,)* W, W*H — A, A" W, WHH)
—g?cos@,,sinf,, (ZZVA"VI/;[WW —AZY (W WHE 4 VK,*W‘“)).

THE TOTAL RESULT:

When we combine the results of thea = 1,2 and a = 3, 4 terms —Fuﬁ,Fa”v/ll, let us order them mainly

according to their prefactor (sin 8, , cos 8,, , cos? 8,,, sin? 8, , cos 8,, sin 8,,). In the next step, let us use
gsinf, = —eand g cos @ = —e cotd. Then we find

1 1
— g FR = -7 (BLEY + ELEY + ELEY + ELEY)
=l 2z g Ly
- _Z uv _Z uv - E uv
—igsin6, (FWW“‘W‘V — A (WmwHk — W,;VW—#))
—igcos6, (ZWW*”W‘V — 2V (WyWHH — W,;W—ﬂ))
2
9 2, N2
+ () w2 - (wrw+)7)
— g% cos? 0, ((Z,)?W,WHH — Z,ZW, W+H)
— g%sin? 0, ((A,)*W, WHH — A, AW, WHH)
— g% cos @, siné, (ZZVAVW,;WW — A7V (W WHE 4 W,,+W"‘))

1 1 1
=— ZFWF’“’ — ZZ‘“’ZW ~3 WoWwky Kkinetic terms

+ ie (oW W= — A" (W W — WhW+)) AW*W ™ vertex

For the terms multiplied by sin? 8,,,, the same relation for A, instead of Z, is useful. For the terms multiplied
by cos 6, sin 8,,, we need the relation
—(W,z, — Z, W, ) (WHAY — AFW ™) + (A W,F — WP A, ) (ZH WY — WHHZY)
= —2Z, AW, WH + 2Z,A*W; W™ + 24, ZF W W*Y — 24,2 W,t W+
= 22,4 (W)’ — (7)) + 28,2 (W W+ — W +4)
= 8Z,AYW, W*H —4A, 7" (W, WHH + WIW™H),
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+ ie cot,, (ZWW“‘W“’ — 2V (WawHk — W;VW—#)) ZW*+W~ vertex

€2

My (W WHHW, WY — WEWHIWF W) WHW*W W~ vertex
w

+ e2(A AW WHE — A, AW, WHH) AAW W™ vertex

+e2cot? 0, (Z, "Wy WHH — Z,ZV W, WHH) ZZW*W ™ vertex

+e2cotBy, (A ZY Wy WHE + W)W H) — 2Z,A"W,WH). AZW*W™ vertex
19.9.3 Fermion Kinetic and Interaction Terms
The next part of the Lagrangian from (>19.9.1) is
Yidy, where D, = 0, + igt®Af.
Let us, again, let the index a run over a = 1, 2, 3,4, such that Af; = B, and t* =Y. As we saw in section
19.4, this covariant derivative can be given in terms of the mass eigenstates W,}’,ZWA# as
g
cos 6,

i
D, =0, + T‘%(W,jﬂ W) - (3 —sin® 6 Q)Z, — ieQA,,

wherett :=t' +it?andQ =t3 +7Y.

We must distinguish between left- and right-handed particles and we need to describe leptons as well
as quarks and we know from section 19.5 that?!

YiDyY = P, iDY, + PriPyYg = (€,iPe, + G| iDq)) + (egiDey + wxiDuy + dpibdy)
= £,i8E, + egideg + gidg + g(W I + WoT )l + ZJh) + eA b

The currents are given by

1
;V# = ——=(vyte, +u Vytd,),
V2

_ 1, _
]Wﬂ = _E(eLy#’VL + dLVT’”'L):

u 1 1 _ .2 1 — i 2 — 1 2 1102 7
Iz = Py (E’U’LV”/U’L + (sm Ow — E) e yte, +sin” 6, epyteg + (E —3sin HW) wyFuy
w

1, 1y - 2 1o
+(§sm HW—E)dLy”dL—gsm 0., ugytug +§sm deRy“dR),
H z yH z yH TR 1 u TR my
Jem = —eLy" e, —ery“er +§MLV ’”vL_gdLV dy +§4’LR}/ uR_ngV dp
2 1._
= —eyte +§/L_Ly“u—§dy"d.

Here, we used the notation

L (VeLtV LIVTL)
&L= = ( . ’ er = (€r, g, Tr), e=e¢p +ep,
(eL) (e, uy,T1)

1 The dashed g’s are not the mass eigenstates (see section 19.8):
(A I ul u;? _ SfuuL) (Ru/u’R) T _
9 ._%L+¢R_(di)+(d§e)_(5¢5h + R dy)’ where S.S4=V.
V is the CKM matrix. Note, that S,,, S;, R,,, R, are unitary matrixes, such that
- S.u - R, u -\ (U -\ U
1 1 =1 0y =1 0 _ (= cT T\ [(Pu™L — pt + uWR\ _ = L —_ R
49 = iI)LCI)L + ?Rq)R = E/u’LSu' d.Sy) (deL) + (#gRy, drRy) (RddR> = (i, d.) (dL) + (g, dr) (dR)
=419t Grdr = 49.
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— /u’X — (uX: CXI tX)) _ —
ax = (gy) = ((dX, sobo) AT A=t
where left- and right-handed particles separate per definition (such that gg = g, g, + Grgr)-

19.9.4 The Higgs Sector
The Higgs sector of the Lagrangian can be given as

L=|Dp =V(p),  V(p)=—n2ptd+A(ptp)”.

The first term contains the kinetic terms of the Higgs field as well as the interaction with the gauge
boson (that includes the gauge boson mass terms). The potential contains the mass term of the Higgs
boson and its self-interactions.

In section 19.3, 19.4 and 19.7, we found that

2 2 . 2 vetin L M2 hy?
|Du¢| = |6#¢| + Higgs mechanism terms + | mj, W, W +TZuZ -(1 +;> ,

where the Higgs mechanics terms effectively ensure the transverse structure of the propagator of the
gauge bosons only (see section 19.3).

In section 19.7, we also found
mpVA A
— " h3 4+ Zht,

V2 4

19.9.5 The Yukawa Sector (Fermion Mass Terms)

The fermion mass terms that we investigated in section 19.6 and 19.8 are also called Yukawa couplings.
In section 19.8 we found the quark mass terms

2
V(g)=Zth +

(G- P Agdlh — €D GG ul + hc. = — (1 + ;) Z(mgdid; + mi @) + he,

L

where the undashed quark spinors are the mass eigenstates (see footnote on page 228).

For the lepton mass terms, we found
- h o
_((SL . ¢)2’86R + h.C. = - (1 + ;)Eméeiek + h_C,
i

(since the unitary matrices that produce the mass eigenstates for leptons disappear from the theory,
we can work in the mass eigenstates right from the beginning and do not need to use the dashed
spinors as for the quarks).

19.9.6 Gauge Transformation Charges
For the sake of gauge transformations, we group the left-handed leptons and the left-handed quarks
into doublets

f=() w=()

whereas we treat the right-handed leptons and quarks as singlets
€r,UR, dR

(note, that there are no right-handed neutrinos v). Additionally, we have to deal with the field ¢p. A
local SU(2) x U(1) gauge transformation then corresponds to
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¢ - Ul,l) — eia“(x)ta+iﬁ(x)Y¢

for arbitrary functions a®(x), 8(x). Here, ¥ can be any of the five objects &, g, eg, tg, dz. Depending
on these five objects, the generators t* may have a different representation and Y may be equal to a
different number. For the electroweak theory to be gauge invariant, what we need is the following
charges:

&L €r aL dg UR [0)
SU(2): t*= o¢%/2 0 o%/2 0 0 o0%/2
U(1): Y= -1/2 -1 1/6 -1/3 2/3 1/2

0® are the Pauli matrices, i. e. the fundamental representation of SU(2).1 Thus, let us define
UgL — eia“(x)t“—iﬁ(x)-l/z) UeR — e—iﬁ(x)’ U@L — eia“(x)t“+i,8(x)-1/6’

Usp = e—iﬁ(x)-1/3, Uyp = ei[i(x)~2/3’ U¢, = ola® ()t +if(x)1/2

In the expressions above, we have t* = g% /2 always. Let us check how these charges satisfy gauge
invariance.

Recalling section 3.7, before switching to mass eigenstates (and obviously before symmetry braking),
the first three terms

1 a v i
— Z Fqua + 1/1191/) + ‘CHiggS

are trivially gauge invariant. Not so the Yukawa sector, however.

GAUGE INVARIANCE OF THE YUKAWA SECTOR:

The Yukawa sector is given by the three terms (and their Hermitian conjugates)
Ly = =€ PIAcer — (G - PIAgdi — € G2 pTP A 4up +hoc.

It straight forward to show that the first two terms are gauge invariant:

—(EL-Pher > —(ELUL - Upd)AU.ger = —(E e i@t +iB1/2 . ola®t®+if1/24)) o=ifep
&L Yo
= —(EL - P)Aeer,

-G - PAgdr > —(@iU;L Up$)AqUardp
— _((ZILe—ia“t“—iﬁl/é . eia“t“+i,8~1/2¢)Ade—i[)’~1/3d}r? — _(‘ZIL . (I’))Add;z-

For the third term, let us investigate U(1) and SU(2) invariance separately. Setting a® = 0, we easily
find that it is U(1) invariant:

Eabq‘—lr‘a(l)-l-bldu;? N Eab%—ILae—i,B-l/6e—L',B~1/2(;b-]-b/ldeiﬁ-z/&u;2 — Eaboiiad)fbldu;e_
Showing SU(2) invariance is somewhat more complicated. Let us start with
—1 / =1 a b I —/ db 1
€PglpTPlur  — € (‘ZLU;;L) (¢TU<D AqUyptig = eab‘%LCU;Lca(l’TdU;r; AaUyrUy,

where (setting now § = 0)

1 Note, that the “charges” of SU(N) transformations (that is, their representations) are alternatively often
simply given as the dimension of its representation. That is, SU(2) charge 2 or a SU(3) charge 3 means
fundamental representation, that is the 2 is equivalent to ¢%/2 and the 3 to 1% /2. An SU(3) charge 8 means
the adjoint representation. And, most confusingly, a SU(N) charge 1 is denoted for the trivial
representation, where all generators are zero. However, in contrast to SU(N), the U(1) charges are always
given as the value of Y; that is the trivial representation of U(1) is never denoted as 1 but always as 0.
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:ereNdb
UTdb (e71@t)™ = 8y, — ia®tl, + 0(a?),

. ca
U;fa = (e‘“"ftf) = 6,4 — ialt!, + 0(a?).

Note, thate, f = 1,2, 3, but all other indices only take on 1, 2. Dropping terms of order a? (« is the
function inside the exponent of U, not the fine structure constant), note that
db . . . ,
“bU(;; Uj;m = € (8qp — ia®t,)(8ca — wzft{a) = €%(848ca — iaf qpt!, — ia®8.4t8,)
= (6428c1 — 8a16c2) — i) (842t]y — Bastl,) — 1a®(Bexty — B.5t50),

N
~
~
\'1
||

o L+t +adtd = @S, +id%s, + acs.,
altl, = altl, + a®ty + adt3, = '8, — ia%8, — @36,
For the last two expressions we used t% = ¢%/2 and @% := a%/2. We also used how the Pauli matrices
explicitly look like to find, for example, 6}, = &,;. Using these identities, we finally find

eab -chTcad)Td U’rdb

=g ot ((5d25c1 — 6a10c2) — iaf(&zzt[l - 6d1t£2) —ia®(6ertar — 5a2t31))
= gilot? — g™ —iaf (pT2gt], — pMigict],) — it (Gl s, — GRS,
= gt — i (p12(a'q7 + @2G7 + @qph) — p1(@GL - ia2q) — @)
—i (6ZIL1(5{1¢+1 _ i&2¢+1 _ &3¢+2) _ GZ'LZ(&l(PJrZ + i&ngﬂ + &3¢+1))
wgapth — i(a (3201 — GroT + glet — GRe)
+ia* (g o + gito™ - gile™ - gre™?)
@ (a1 ™ + 32" - 4i'™ - g2 ™))

— Eab%_ia(p-rb.

Thus, also the third term is indeed gauge invariant.
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20 QUANTIZATION OF GWS THEORY

20.1 R-Xi Gauge — Faddeev-Popov Procedure

20.1.1 Functional Quantization
For quantization, we start with the functional integral

7= J DADP' exp (i f d*x L[A, (;b’]),
where A summarizes all fields A7 and y is the scalar field deviation from its vacuum expectation value:

¢ = ¢y + @'. Asin (>15.3.2) and (>18.2.1) we fix the gauge by introducing a 1 in form of

8G(A%, ')
da? '

1= f@a S(Ga(A“,qb’“))‘det

We can now turn A% — A by a shift and rotation and ¢'* — ¢’ by a unitary transformation, without
changing the integration measure or Lagrangian or determinant, as explained in (>18.2.1):

Z= f@A D’ fl)a 5(G(A%, ¢")) exp (ifd“x L[A,qb’]) ‘det%

= fDA Do’ 5(G*(4,¢")) exp (ifd‘*x L[A,¢']) ‘detgg:

We also dropped the integration over a here, since it drops out for n-point functions. Let us use the
so-called R; gauge condition,

1
V&

where F{* := T{j¢; such that m2, = g?F%F", as we know from section 19.3.

G(A%,¢'") = H°(A%(x),¢"%(x)) — w®(x),  H(A% ¢'%) == —=(0,A + EgFF pi%),

Following the steps from (>18.2.1), we can integrate over w with a Gaussian weight, such that
(neglecting global normalization factors)

Z= wa exp (—ifd%%wbwb)fDAD¢'5(Ha(A,¢') —w®)exp (ifd4xL[A'¢’])|dEthGg;

1 0G°
= fDA D' exp (—ifd“xEHbe) exp (ifd“x L[A,cp’]) |detW.

The gauge fixing term effectively adds the following terms to the Lagrangian:
1 HOH = 1
-5 T
1 ! ! !
=— % ((OMA“”)(GVAZ) + ng(FiaCbi)(ayAa”) +&2g2 (Fiaﬁbi)(Fja(l’j))

(8,A% + £gFag))’

! 1
= 57 (41040,47) = g (Fiu9(0,4) = 5697 (R 91

20.1.2 Gauge Boson and Goldstone Boson Kinetic Terms
Those terms are added to the Lagrangian. The Lagrangian that is invariant under the gauge
transformations that turned A* - A and ¢'® — ¢' reads

1 1 2
L= —ZFH%,F;“’ + E(Dﬂ)) - V(¢).

In the form in which we have given the Lagrangian above, it is made up of the following three terms
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——F&4F" = —l(a Ag —0,A%) (0" Ay — 0V AL) + 0(4%)

((a A%)(0+4) - (a, Aa)(aVA“)) +0(43%) = —Aa(n“"D ORDV)A% + 0(43),

%(D,@)Z = %(%qb’)z — gAL (8, )FE + ‘”’AaA“ + 0((fields)?),

0
V($) = V(g + ¢') = V(o) + 5

209,09, V(q’)‘ __;fﬂ(&:—:fiﬂ 0(¢").
_.Ml?j J

For the first one, we used the definition of £}, from section 3.7. For the second one we copied the result

from section 18.3 or (>19.3.2). Finally, the last term was copied from (>19.2.1). Thus, was appears in
the exponent of the path integral Z reads (neglecting the constant V (¢,))

1 1 1 2 ,
L— EH“Ha = <§Aﬁ(n‘“’lj — 0*9V)AS + E(auqb’) — gAb(0,¢))F* + 2‘”’ ALAL — —M2 ¢ ¢]>

1 1
+ (2—f (420"8,A%) — g(Fia})(8,A4%) — gs‘gz(ﬂ“w) + 0((fields)?)
1 1 2 1
= SAL(PYO = 010V)8° AL + 5 (a,lqb’)2 + %nwAﬁAﬁ -5 Mi$i¢]

215 (A%01avAL)5b — EgZ(Fi“q5{)2 + O((fields)?)

! a wv 1 uyv ) sab 2 uv | gb
:_EAu (—77 D+(1_E>a d )5 —mg,n*Y | A
1 B S _ s
+5 (') =5 M i) — 5 £ (FED? + O((fields)?).

The terms that mix A% and ¢; - one of which comes from the original Lagrangian and one out of H*H,,
- cancel by partial integration.

20.1.3 Ghost Kinetic Terms

Finally, we must take care of the functional determinant. When we wrote the fields A%, ¢'* with an
additional index a, we meant by them the gauge transformed fields, that depend on the field a%(x).
Specifically, for the gauge fields it means (exactly as in (>18.2.1))

1 1
A =A% —— (D) = A% =-=(D,a)".
g g
Note, that this form of the gauge transformation of A%" was derived in (>18.2.1) and holds, if the
generator t* inside the covariant derivative D, is chosen in the adjoint representation.
¢'® can be read of the gauge transformation rule for ¢ (from (>19.3.1)) since ¢ = ¢, + x:
¢->¢—a'T A Pot+ @' > do+ ¢ —a’T (P + ")
S P —a TGt ) = 6= —a T po + ).
Thus,

5G¢ 5 1 1
(0,45 + EgFf %) —w > _(_Eaqud — EgFFT (o + ¢’)j)'

Wzaad<\/‘ NG

Using, as already in (>18.2.2) and (>15.5.2), the analogy f(HidHZ‘dHi)e_egAif‘gi = det 4, we can write
the determinant as a functional integral
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0G¢
sad

6G°

5ol deti

det

= f DY DI exp (i f d*x 5(—3;11)51 - fngiCTiC}(qSo + ¢,)j)19)'

Here, we absorbed a factor of l/g\/g into the fields 9.1

20.2 R-Xi Gauge — Propagators

20.2.1 Gauge Boson Propagator
The terms of order A? in the Lagrangian where computed at the end of (>20.1.2) read

1 a v 1 v ab 2 v b
_EA” (—n” D—I—(l—g)a“a )6 —m5n* | A4y.

In Fourier space, the bracket becomes

1
(7]‘“’1(2 - (1 - E) k”k") 5% —mZ, nHv
Kbk khkY 1
- (,,uv - )(kzaab = mip) + oy (k26 - gmy).

Let us write the expression above as a matrix, that is §%? - 1 and mZ, - 3.

We are looking for the Greens function ib\fﬁv with matrix components iﬁ:zb of this operator, just as at
the very end of (>18.2.1). The following expression does the job:

~ —i k# kY —i&  kHKY
=55

D= —— :
P k2l k2 ) k2 —¢&mZ k2

as we can show readily explicitly:

=iDF,vo'

KHkY o kMkv1 o[ T kv kg —8kks
((””V - 7) (k? = M3) + —3 E(kz - fmA)) l <k2 — m2 (n"” k2 ) s §ig k2

_ (Tl’“’ B kukv) (77 B kvkg) 4 ( v kukv) (k? —m2)E kk,
kz J\e k2 k2 ) k?— &z k2
kHkY 1 k% — Em3 kykgs\  kFKY ky kg
k2 € k2 — 2 (””"_ k2 ) k2 k2
B (5" _kfks  KFk, N k“k(,) (k“k(, _ k“ka> (k? — m3)é
U7 k2 k2 k2 k2 k2 ) k2 — &ni?
1k? —&m3 (kPky  kPky\  kfk,
EkZ—mg(kZ B k2) = O

The form of DL” given above was such that it was easy to show that it is a Greens function of the
respective operator. However, it possible to give it in a somewhat nicer form:

1 To me, it comes as a little surprise, that we also can absorb the gauge & into the ghost fields. Peskin&Schréder
let this factor 1/\/? simply disappear, and the explanation, that it is absorbed into the fields, is the best I have.
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k“k") —i kMK
k2 —Em2 k?

—i ktkY k% —m3 kHkY
= — T]”’v - + f
- ( k2 P k2 —&m2 k2 >

—i k*kY 1
=+mz<"‘”‘ g (6~ 670 — £ = )>
A

i v k*kY

This propagator is, just as the mass matrix 715, a matrix with indices a, b; that is, the components of

AUV AUV
Dg" are DF ab"

ab
-1

- o kR
DFab_ k ~72 77 Z_Emi(l_f)

—my

20.2.2 Scalar Field Propagator
The effective Lagrangian L = L — H,H%/2 + (ghost terms) contains the following terms containing
only two scalar fields ¢’ (we can read them of from section 19.1 or (>20.1.2)):

1 1
L =5(0,0)" ~ 5 EG(FOQD? ~ S MEgd) +
1 1
=2(0,9")" =5 (607ReRR + 5M5~)¢{¢,’- +

By analogy to the Lagrangians and propagators of the massive Klein-Gordon field, the propagator to
this Lagrangian reads

Dy = : ’
F — kz—fngaFa—Mz '

20.2.3 Ghost Propagator
The terms of the ghost part of the effective Lagrangian from section 19.1 or (>20.1.3) that contain exactly
two ghost fields (and no other fields) read

9(=0,0" — EG2F Tho; )9 = (9,9)(8"9) — Eg*FFL 99,

where we used partial integration for the first term. It propagator reads

i ab
Prab = (k2 - Eng-“F-b> |
L l

20.3 R-Xi Gauge — Propagators for GWS Theory

20.3.1 Propagators for GWS Theory
We know from section 18.4 that the mass matrix of the gauge bosons of GWS theory reads

ab
g 0 0 0
vi[ 0 g2 0 0
— 2yab —
mab (m ) 4 0 0 gz _ggr
0 0 —-gg9 g~
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where a = 1, 2, 3,4 with Af; = B,. Asin (>19.4.4), we can diagonalize this matrix and thereby find the
mass eigenstates, which we called Wui,Zﬁ and A, with the masses m,, mz, my, given in section 18.4.

Then, after diagonalization, also the propagator D}f;b becomes diagonal. We then can write the gauge
boson propagators as

—~ —i ktkY
D#V = —(nlﬂ/ —_ k2—2(1 - f)),

p
k? —my —{my

where m% = m2,, m%,m3 for the W* bosons, the Z boson or the photon respectively (m, = 0). The
mass matrix m2, = g?FAF? also appears in the ghost propagator, which we can write after
diagonalization as

- i

Dp = ——F—.
Pk —emg
Finally, the mass of the propagator of the scalar field reads
~EgRFLE — M,

The g in this term equals the g% with g* = g fora = 1,2,3 and g* = g’ which we used in chapter 19.
That is, using the matrix g®F from section 18.4,

g F{Ff = Z(g“Fi“)(g“Fj“) = (gF)i(gR)¥ = ((gF)"(gF))"

ij

g 00 0\/9 0 0 0 g> 0 0 0
_v*[{o g o o \[0o g 0 o) _v[ o g2 0o 0
S 4(\0 0 g —g'JIO O g OJ) "4l 0 g2+g? O

000 O0 0 0 —g" O 0 0 0 0

mzZ 0 0 o0\"
(0o m& o0 o

0 0 m: 0

0 0 0 0

Recall our construction of the scalar field from (>19.3.1),

?= %(_qbif o)

with four real fields ¢;. We always chose the vacuum expectation value to only have the component
¢4 non-vanishing. Thus, in analogy with our derivation in section 18.1, the components ¢4, ¢,, P53
describe Goldstone bosons, which do not obtain a mass M;; from the potential V (>19.2.1). However,

they do obtain a mass g®F{*F;* from the Higgs mechanism.

On the other hand, the Higgs field is described by the fourth component ¢,. Obviously, the fourth
diagonal component of the matrix ngiaFja is zero, but the Higgs boson receives a mass from M;;.

Thus, the Goldstone boson propagator reads
Mmeg = My, My, Mz
and the propagator of the Higgs boson reads

i

Dr =1,
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with an independent Higgs mass my,.
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21

21.2 7?7

21.2.1 ???

Consider an infinitesimal SU(N) gauge transformation. Whereas the transformation of the gauge
fields is more complex under this transformation (see section 3.9 or later below), scalar or fermion
fields transform under such a transformation like

Pi(x) = @i(x) +8¢;(x),  where  §¢;(x) = —ia,(x) tj ¢; ().
If @, (x) is a constant function of x, that is a,(x) = a,, the transformation is global.

Consider a Lagrangian £, that is symmetric under such a global transformation. Usually, that means
that £, simply contains the kinetic and the mass terms of the scalar or/and fermion fields ¢;, since
they are quadratic in those fields and therefore respect this symmetry.

According to section 3.3 (in the present case for x'# = x* = §x# = 0), this yields a variation of the
Lagrangian £y — Ly + 6L, with

oL P oL 50,() 0.3 oL 20 (x)
= —60:;(x) | = —ia —t%p: (x) |.
0 u O(c?uqoi) Pi au a(aﬂ(pi) ijPi

Since a, is arbitrary and the unitary transformation should leave the Lagrangian unchanged (as we
assumed in the beginning), we can identify the current

J#(x) = —ia(a—‘C)t{ljgoi(x) with 9, J*(x) = 0.

ay(pi
Using L, as a starting point, we now want to construct a general Lagrangian £ that is also symmetric
under a local gauge transformation, where a,(x) is a function of x. Our Lagrangian £, that is

symmetric under a global gauge transformation, now receives an additional term § £, # 0:

oL
0Ly =0, | ———=p;(x) | =0,

L a
u 3(%%) )aa(x)tijq’i(x)

6(6”<pi

=aq)(x)
= a,(x) ay]aﬂ(x) + 4 (x) ayaa(x) = J*(x) a/,taa(x)-

=0

Thus, we need to add another term L' to construct £ = L, + L', such that £ is invariant under local
gauge transformation. For this term, we should use a gauge field, that transforms as

1
Af - Af — 7 (0,a%) + fobcAbac

under local gauge transformation, as we found in section 3.9. If we use L' = gA3J* + 0(A?), we find
that

LS g<Aa_l(a aa)+fabcAbac>]au
" g " u

l ap 1 a abc gb ¢ ) Jau abc gb ¢ rau
SL=6Ly+6L' =] 6#aa+g(—§(6#0()+f Aﬂa)] = gf*cAbac ]
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